Add chemberta3 benchmark results
Browse files
README.md
CHANGED
|
@@ -4,11 +4,115 @@ datasets:
|
|
| 4 |
- Derify/augmented_canonical_druglike_QED_43M
|
| 5 |
- Derify/druglike
|
| 6 |
metrics:
|
| 7 |
-
-
|
|
|
|
| 8 |
library_name: transformers
|
| 9 |
tags:
|
| 10 |
- ChemBERTa
|
| 11 |
- cheminformatics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
# ChemBERTa-druglike: Two-phase MLM Pretraining for Drug-like SMILES
|
|
@@ -50,6 +154,26 @@ The model's effectiveness was validated through downstream Chem-MRL training on
|
|
| 50 |
|
| 51 |
W&B report on [ChemBERTa-druglike evaluation](https://api.wandb.ai/links/ecortes/afh508m3).
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
## Use Cases
|
| 54 |
|
| 55 |
- Molecular property prediction
|
|
@@ -61,6 +185,38 @@ W&B report on [ChemBERTa-druglike evaluation](https://api.wandb.ai/links/ecortes
|
|
| 61 |
- Optimized specifically for drug-like molecules
|
| 62 |
- Performance may vary on non-drug-like chemical compounds
|
| 63 |
|
| 64 |
-
##
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
- Derify/augmented_canonical_druglike_QED_43M
|
| 5 |
- Derify/druglike
|
| 6 |
metrics:
|
| 7 |
+
- roc_auc
|
| 8 |
+
- rmse
|
| 9 |
library_name: transformers
|
| 10 |
tags:
|
| 11 |
- ChemBERTa
|
| 12 |
- cheminformatics
|
| 13 |
+
pipeline_tag: fill-mask
|
| 14 |
+
model-index:
|
| 15 |
+
- name: Derify/ChemBERTa-druglike
|
| 16 |
+
results:
|
| 17 |
+
- task:
|
| 18 |
+
type: text-classification
|
| 19 |
+
name: Classification (ROC AUC)
|
| 20 |
+
dataset:
|
| 21 |
+
name: BACE
|
| 22 |
+
type: Derify/druglike
|
| 23 |
+
metrics:
|
| 24 |
+
- type: roc_auc
|
| 25 |
+
value: 0.8114
|
| 26 |
+
- task:
|
| 27 |
+
type: text-classification
|
| 28 |
+
name: Classification (ROC AUC)
|
| 29 |
+
dataset:
|
| 30 |
+
name: BBBP
|
| 31 |
+
type: Derify/druglike
|
| 32 |
+
metrics:
|
| 33 |
+
- type: roc_auc
|
| 34 |
+
value: 0.7399
|
| 35 |
+
- task:
|
| 36 |
+
type: text-classification
|
| 37 |
+
name: Classification (ROC AUC)
|
| 38 |
+
dataset:
|
| 39 |
+
name: TOX21
|
| 40 |
+
type: Derify/druglike
|
| 41 |
+
metrics:
|
| 42 |
+
- type: roc_auc
|
| 43 |
+
value: 0.7522
|
| 44 |
+
- task:
|
| 45 |
+
type: text-classification
|
| 46 |
+
name: Classification (ROC AUC)
|
| 47 |
+
dataset:
|
| 48 |
+
name: HIV
|
| 49 |
+
type: Derify/druglike
|
| 50 |
+
metrics:
|
| 51 |
+
- type: roc_auc
|
| 52 |
+
value: 0.7527
|
| 53 |
+
- task:
|
| 54 |
+
type: text-classification
|
| 55 |
+
name: Classification (ROC AUC)
|
| 56 |
+
dataset:
|
| 57 |
+
name: SIDER
|
| 58 |
+
type: Derify/druglike
|
| 59 |
+
metrics:
|
| 60 |
+
- type: roc_auc
|
| 61 |
+
value: 0.6577
|
| 62 |
+
- task:
|
| 63 |
+
type: text-classification
|
| 64 |
+
name: Classification (ROC AUC)
|
| 65 |
+
dataset:
|
| 66 |
+
name: CLINTOX
|
| 67 |
+
type: Derify/druglike
|
| 68 |
+
metrics:
|
| 69 |
+
- type: roc_auc
|
| 70 |
+
value: 0.9660
|
| 71 |
+
- task:
|
| 72 |
+
type: regression
|
| 73 |
+
name: Regression (RMSE)
|
| 74 |
+
dataset:
|
| 75 |
+
name: ESOL
|
| 76 |
+
type: Derify/druglike
|
| 77 |
+
metrics:
|
| 78 |
+
- type: rmse
|
| 79 |
+
value: 0.8241
|
| 80 |
+
- task:
|
| 81 |
+
type: regression
|
| 82 |
+
name: Regression (RMSE)
|
| 83 |
+
dataset:
|
| 84 |
+
name: FREESOLV
|
| 85 |
+
type: Derify/druglike
|
| 86 |
+
metrics:
|
| 87 |
+
- type: rmse
|
| 88 |
+
value: 0.5350
|
| 89 |
+
- task:
|
| 90 |
+
type: regression
|
| 91 |
+
name: Regression (RMSE)
|
| 92 |
+
dataset:
|
| 93 |
+
name: LIPO
|
| 94 |
+
type: Derify/druglike
|
| 95 |
+
metrics:
|
| 96 |
+
- type: rmse
|
| 97 |
+
value: 0.6663
|
| 98 |
+
- task:
|
| 99 |
+
type: regression
|
| 100 |
+
name: Regression (RMSE)
|
| 101 |
+
dataset:
|
| 102 |
+
name: BACE
|
| 103 |
+
type: Derify/druglike
|
| 104 |
+
metrics:
|
| 105 |
+
- type: rmse
|
| 106 |
+
value: 1.0105
|
| 107 |
+
- task:
|
| 108 |
+
type: regression
|
| 109 |
+
name: Regression (RMSE)
|
| 110 |
+
dataset:
|
| 111 |
+
name: CLEARANCE
|
| 112 |
+
type: Derify/druglike
|
| 113 |
+
metrics:
|
| 114 |
+
- type: rmse
|
| 115 |
+
value: 43.4499
|
| 116 |
---
|
| 117 |
|
| 118 |
# ChemBERTa-druglike: Two-phase MLM Pretraining for Drug-like SMILES
|
|
|
|
| 154 |
|
| 155 |
W&B report on [ChemBERTa-druglike evaluation](https://api.wandb.ai/links/ecortes/afh508m3).
|
| 156 |
|
| 157 |
+
## Benchmarks
|
| 158 |
+
### Classification Datasets (ROC AUC - Higher is better)
|
| 159 |
+
|
| 160 |
+
| Model | BACE↑ | BBBP↑ | TOX21↑ | HIV↑ | SIDER↑ | CLINTOX↑ |
|
| 161 |
+
| ------------------------- | ------ | ------ | ------ | ------ | ------ | -------- |
|
| 162 |
+
| **Tasks** | 1 | 1 | 12 | 1 | 27 | 2 |
|
| 163 |
+
| Derify/ChemBERTa-druglike | 0.8114 | 0.7399 | 0.7522 | 0.7527 | 0.6577 | 0.9660 |
|
| 164 |
+
|
| 165 |
+
### Regression Datasets (RMSE - Lower is better)
|
| 166 |
+
|
| 167 |
+
| Model | ESOL↓ | FREESOLV↓ | LIPO↓ | BACE↓ | CLEARANCE↓ |
|
| 168 |
+
| ------------------------- | ------ | --------- | ------ | ------ | ---------- |
|
| 169 |
+
| **Tasks** | 1 | 1 | 1 | 1 | 1 |
|
| 170 |
+
| Derify/ChemBERTa-druglike | 0.8241 | 0.5350 | 0.6663 | 1.0105 | 43.4499 |
|
| 171 |
+
|
| 172 |
+
Benchmarks were conducted using the [chemberta3](https://github.com/deepforestsci/chemberta3) framework.
|
| 173 |
+
Datasets were split with DeepChem’s scaffold splits and filtered to include only molecules with SMILES length ≤128, matching the model’s maximum input length.
|
| 174 |
+
The ChemBERTa-druglike model was fine-tuned for 100 epochs with a learning rate of 3e-5 and batch size of 32.
|
| 175 |
+
Each task was run with 3 different random seeds, and the mean performance is reported.
|
| 176 |
+
|
| 177 |
## Use Cases
|
| 178 |
|
| 179 |
- Molecular property prediction
|
|
|
|
| 185 |
- Optimized specifically for drug-like molecules
|
| 186 |
- Performance may vary on non-drug-like chemical compounds
|
| 187 |
|
| 188 |
+
## Citations
|
| 189 |
+
### ChemBERTa Series
|
| 190 |
+
```
|
| 191 |
+
@misc{chithrananda2020chembertalargescaleselfsupervisedpretraining,
|
| 192 |
+
title={ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction},
|
| 193 |
+
author={Seyone Chithrananda and Gabriel Grand and Bharath Ramsundar},
|
| 194 |
+
year={2020},
|
| 195 |
+
eprint={2010.09885},
|
| 196 |
+
archivePrefix={arXiv},
|
| 197 |
+
primaryClass={cs.LG},
|
| 198 |
+
url={https://arxiv.org/abs/2010.09885},
|
| 199 |
+
}
|
| 200 |
+
```
|
| 201 |
+
```
|
| 202 |
+
@misc{ahmad2022chemberta2chemicalfoundationmodels,
|
| 203 |
+
title={ChemBERTa-2: Towards Chemical Foundation Models},
|
| 204 |
+
author={Walid Ahmad and Elana Simon and Seyone Chithrananda and Gabriel Grand and Bharath Ramsundar},
|
| 205 |
+
year={2022},
|
| 206 |
+
eprint={2209.01712},
|
| 207 |
+
archivePrefix={arXiv},
|
| 208 |
+
primaryClass={cs.LG},
|
| 209 |
+
url={https://arxiv.org/abs/2209.01712},
|
| 210 |
+
}
|
| 211 |
+
```
|
| 212 |
+
```
|
| 213 |
+
@misc{singh2025chemberta3opensource,
|
| 214 |
+
title={ChemBERTa-3: An Open Source Training Framework for Chemical Foundation Models},
|
| 215 |
+
author={Singh, R. and Barsainyan, A. A. and Irfan, R. and Amorin, C. J. and He, S. and Davis, T. and others},
|
| 216 |
+
year={2025},
|
| 217 |
+
howpublished={ChemRxiv},
|
| 218 |
+
doi={10.26434/chemrxiv-2025-4glrl-v2},
|
| 219 |
+
note={This content is a preprint and has not been peer-reviewed},
|
| 220 |
+
url={https://doi.org/10.26434/chemrxiv-2025-4glrl-v2}
|
| 221 |
+
}
|
| 222 |
+
```
|