--- language: - rw license: cc-by-4.0 library_name: nemo datasets: - DigitalUmuganda/Afrivoice_Kinyarwanda thumbnail: null tags: - automatic-speech-recognition - speech - audio - CTC - Conformer - NeMo - pytorch --- ## Model Overview ## Dependencies To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). For inference just run: ``` pip install nemo_toolkit['all'] ``` ## How to Use this Model The model is available for use in the NeMo toolkit, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. ### Load the model weights ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.ASRModel.from_pretrained("DigitalUmuganda/Mbaza-ASR-Afrivoice-660h") ``` ### Transcribing using Python ``` asr_model.transcribe(['']) ``` ### Transcribing many audio files ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="DigitalUmuganda/nemo_kin_pretrained_800h_retrained_tokenizer" audio_dir="" ``` ### Input This model accepts 16000 KHz Mono-channel Audio (wav files) as input.