File size: 5,007 Bytes
d368d2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
license: mit
base_model: severinsimmler/xlm-roberta-longformer-base-16384
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: longformer_pos_neg
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# longformer_pos_neg

This model is a fine-tuned version of [severinsimmler/xlm-roberta-longformer-base-16384](https://huggingface.co/severinsimmler/xlm-roberta-longformer-base-16384) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5549
- Precision: 0.5599
- Recall: 0.5786
- F1: 0.5691
- Accuracy: 0.9030

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.35  | 50   | 0.7729          | 0.0       | 0.0    | 0.0    | 0.7762   |
| No log        | 2.7   | 100  | 0.5497          | 0.0220    | 0.0078 | 0.0115 | 0.8017   |
| No log        | 4.05  | 150  | 0.4143          | 0.0706    | 0.0698 | 0.0702 | 0.8383   |
| No log        | 5.41  | 200  | 0.3607          | 0.2329    | 0.2578 | 0.2447 | 0.8632   |
| No log        | 6.76  | 250  | 0.3320          | 0.3628    | 0.3101 | 0.3344 | 0.8807   |
| No log        | 8.11  | 300  | 0.3261          | 0.5108    | 0.4574 | 0.4826 | 0.8939   |
| No log        | 9.46  | 350  | 0.3190          | 0.4229    | 0.5950 | 0.4944 | 0.8826   |
| No log        | 10.81 | 400  | 0.2662          | 0.4821    | 0.6008 | 0.5349 | 0.9014   |
| No log        | 12.16 | 450  | 0.2714          | 0.5901    | 0.5775 | 0.5837 | 0.9137   |
| 0.3792        | 13.51 | 500  | 0.2852          | 0.5769    | 0.5891 | 0.5829 | 0.9105   |
| 0.3792        | 14.86 | 550  | 0.3868          | 0.5876    | 0.5329 | 0.5589 | 0.9082   |
| 0.3792        | 16.22 | 600  | 0.3218          | 0.5444    | 0.6531 | 0.5938 | 0.9129   |
| 0.3792        | 17.57 | 650  | 0.3022          | 0.5645    | 0.6357 | 0.5980 | 0.9112   |
| 0.3792        | 18.92 | 700  | 0.3737          | 0.5419    | 0.6764 | 0.6017 | 0.9025   |
| 0.3792        | 20.27 | 750  | 0.3730          | 0.5411    | 0.6628 | 0.5958 | 0.9119   |
| 0.3792        | 21.62 | 800  | 0.4021          | 0.6145    | 0.6240 | 0.6192 | 0.9109   |
| 0.3792        | 22.97 | 850  | 0.3358          | 0.5159    | 0.6298 | 0.5672 | 0.9008   |
| 0.3792        | 24.32 | 900  | 0.3779          | 0.6065    | 0.6124 | 0.6095 | 0.9138   |
| 0.3792        | 25.68 | 950  | 0.4435          | 0.5293    | 0.6298 | 0.5752 | 0.9063   |
| 0.0755        | 27.03 | 1000 | 0.4230          | 0.6333    | 0.6124 | 0.6227 | 0.9169   |
| 0.0755        | 28.38 | 1050 | 0.3666          | 0.5911    | 0.6415 | 0.6152 | 0.9163   |
| 0.0755        | 29.73 | 1100 | 0.3335          | 0.6098    | 0.6512 | 0.6298 | 0.9178   |
| 0.0755        | 31.08 | 1150 | 0.4606          | 0.5725    | 0.6202 | 0.5953 | 0.9075   |
| 0.0755        | 32.43 | 1200 | 0.4280          | 0.5656    | 0.6434 | 0.6020 | 0.9065   |
| 0.0755        | 33.78 | 1250 | 0.4003          | 0.5833    | 0.6376 | 0.6093 | 0.9158   |
| 0.0755        | 35.14 | 1300 | 0.5802          | 0.6422    | 0.5775 | 0.6082 | 0.9020   |
| 0.0755        | 36.49 | 1350 | 0.4503          | 0.6014    | 0.6550 | 0.6271 | 0.9172   |
| 0.0755        | 37.84 | 1400 | 0.5614          | 0.6643    | 0.5523 | 0.6032 | 0.9044   |
| 0.0755        | 39.19 | 1450 | 0.5082          | 0.628     | 0.6085 | 0.6181 | 0.9119   |
| 0.0407        | 40.54 | 1500 | 0.3964          | 0.6072    | 0.6531 | 0.6293 | 0.9165   |
| 0.0407        | 41.89 | 1550 | 0.5447          | 0.4572    | 0.6938 | 0.5512 | 0.8799   |
| 0.0407        | 43.24 | 1600 | 0.5303          | 0.4816    | 0.6589 | 0.5565 | 0.8947   |
| 0.0407        | 44.59 | 1650 | 0.4461          | 0.6409    | 0.6260 | 0.6333 | 0.9138   |
| 0.0407        | 45.95 | 1700 | 0.6884          | 0.5561    | 0.4031 | 0.4674 | 0.8766   |
| 0.0407        | 47.3  | 1750 | 0.4556          | 0.5431    | 0.6105 | 0.5748 | 0.9097   |
| 0.0407        | 48.65 | 1800 | 0.4272          | 0.6771    | 0.5853 | 0.6279 | 0.9183   |
| 0.0407        | 50.0  | 1850 | 0.4904          | 0.5603    | 0.6570 | 0.6048 | 0.9015   |
| 0.0407        | 51.35 | 1900 | 0.4206          | 0.5655    | 0.6357 | 0.5985 | 0.9135   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2