Update README.md
Browse files
README.md
CHANGED
@@ -41,31 +41,135 @@ This repository contains a ResNet-based convolutional neural network trained to
|
|
41 |
### Inference:
|
42 |
```python
|
43 |
import torch
|
44 |
-
from torchvision import
|
45 |
from PIL import Image
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
transform = transforms.Compose([
|
50 |
transforms.Resize((128, 128)),
|
51 |
transforms.ToTensor(),
|
52 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
53 |
])
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
image =
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
### Inference:
|
42 |
```python
|
43 |
import torch
|
44 |
+
from torchvision.models import resnet18
|
45 |
from PIL import Image
|
46 |
+
import torchvision.transforms as transforms
|
47 |
+
import matplotlib.pyplot as plt
|
48 |
+
model = resnet18(pretrained=False)
|
49 |
+
num_ftrs = model.fc.in_features
|
50 |
+
model.fc = torch.nn.Linear(num_ftrs, 2)
|
51 |
+
|
52 |
+
# Load the trained model state_dict
|
53 |
+
model_path = 'cat_dog_classifier.pth'
|
54 |
+
model.load_state_dict(torch.load(model_path))
|
55 |
+
model.eval()
|
56 |
+
|
57 |
+
<!-- ResNet(
|
58 |
+
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
|
59 |
+
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
60 |
+
(relu): ReLU(inplace=True)
|
61 |
+
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
|
62 |
+
(layer1): Sequential(
|
63 |
+
(0): BasicBlock(
|
64 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
65 |
+
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
66 |
+
(relu): ReLU(inplace=True)
|
67 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
68 |
+
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
69 |
+
)
|
70 |
+
(1): BasicBlock(
|
71 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
72 |
+
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
73 |
+
(relu): ReLU(inplace=True)
|
74 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
75 |
+
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
76 |
+
)
|
77 |
+
)
|
78 |
+
(layer2): Sequential(
|
79 |
+
(0): BasicBlock(
|
80 |
+
(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
|
81 |
+
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
82 |
+
(relu): ReLU(inplace=True)
|
83 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
84 |
+
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
85 |
+
(downsample): Sequential(
|
86 |
+
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
|
87 |
+
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
88 |
+
)
|
89 |
+
)
|
90 |
+
(1): BasicBlock(
|
91 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
92 |
+
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
93 |
+
(relu): ReLU(inplace=True)
|
94 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
95 |
+
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
96 |
+
)
|
97 |
+
)
|
98 |
+
(layer3): Sequential(
|
99 |
+
(0): BasicBlock(
|
100 |
+
(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
|
101 |
+
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
102 |
+
(relu): ReLU(inplace=True)
|
103 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
104 |
+
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
105 |
+
(downsample): Sequential(
|
106 |
+
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
|
107 |
+
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(1): BasicBlock(
|
111 |
+
(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
112 |
+
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
113 |
+
(relu): ReLU(inplace=True)
|
114 |
+
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
115 |
+
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
116 |
+
)
|
117 |
+
)
|
118 |
+
(layer4): Sequential(
|
119 |
+
(0): BasicBlock(
|
120 |
+
(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
|
121 |
+
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
122 |
+
(relu): ReLU(inplace=True)
|
123 |
+
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
124 |
+
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
125 |
+
(downsample): Sequential(
|
126 |
+
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
|
127 |
+
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
128 |
+
)
|
129 |
+
)
|
130 |
+
(1): BasicBlock(
|
131 |
+
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
132 |
+
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
133 |
+
(relu): ReLU(inplace=True)
|
134 |
+
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
135 |
+
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
136 |
+
)
|
137 |
+
)
|
138 |
+
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
|
139 |
+
(fc): Linear(in_features=512, out_features=2, bias=True)
|
140 |
+
)
|
141 |
+
-->
|
142 |
+
# Define the transformation (ensure it matches the training preprocessing)
|
143 |
transform = transforms.Compose([
|
144 |
transforms.Resize((128, 128)),
|
145 |
transforms.ToTensor(),
|
146 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
147 |
])
|
148 |
|
149 |
+
def load_image(image_path):
|
150 |
+
image = Image.open(image_path)
|
151 |
+
image = transform(image)
|
152 |
+
image = image.unsqueeze(0) # Add batch dimension
|
153 |
+
return image
|
154 |
+
|
155 |
+
def predict_image(model, image_path):
|
156 |
+
image = load_image(image_path)
|
157 |
+
model.eval()
|
158 |
+
with torch.no_grad():
|
159 |
+
outputs = model(image)
|
160 |
+
_, predicted = torch.max(outputs, 1)
|
161 |
+
return "Cat" if predicted.item() == 0 else "Dog"
|
162 |
+
|
163 |
+
def plot_image(image_path, prediction):
|
164 |
+
image = Image.open(image_path)
|
165 |
+
plt.imshow(image)
|
166 |
+
plt.title(f'Predicted: {prediction}')
|
167 |
+
plt.axis('off')
|
168 |
+
plt.show()
|
169 |
+
|
170 |
+
# Example usage
|
171 |
+
image_path = "path.jpeg"
|
172 |
+
prediction = predict_image(model, image_path)
|
173 |
+
print(f'The predicted class for the image is: {prediction}')
|
174 |
+
plot_image(image_path, prediction)
|
175 |
+
The predicted class for the image is: Cat
|