Update README.md
Browse files
README.md
CHANGED
@@ -44,28 +44,29 @@ This repository contains a ResNet-based convolutional neural network trained to
|
|
44 |
import torch
|
45 |
from torchvision import transforms
|
46 |
from PIL import Image
|
|
|
47 |
|
48 |
-
#
|
49 |
-
model = torch.hub.load('DineshKumar1329/DogCat_Classifier', 'resnet_cat_dog_classifier')
|
50 |
-
|
51 |
-
# Define the transformation
|
52 |
transform = transforms.Compose([
|
53 |
transforms.Resize((128, 128)),
|
54 |
transforms.ToTensor(),
|
55 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
56 |
])
|
57 |
|
58 |
-
# Load
|
|
|
|
|
|
|
59 |
image_path = 'path/to/your/image.jpg'
|
60 |
image = Image.open(image_path)
|
61 |
image = transform(image)
|
62 |
image = image.unsqueeze(0) # Add batch dimension
|
63 |
|
64 |
# Make a prediction
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
# Output the prediction
|
71 |
-
print(f'The predicted class for the image is: {
|
|
|
44 |
import torch
|
45 |
from torchvision import transforms
|
46 |
from PIL import Image
|
47 |
+
from transformers import pipeline
|
48 |
|
49 |
+
# Define the image transformation
|
|
|
|
|
|
|
50 |
transform = transforms.Compose([
|
51 |
transforms.Resize((128, 128)),
|
52 |
transforms.ToTensor(),
|
53 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
54 |
])
|
55 |
|
56 |
+
# Load the model from Hugging Face
|
57 |
+
pipe = pipeline("image-classification", model="DineshKumar1329/DogCat_Classifier")
|
58 |
+
|
59 |
+
# Load and preprocess an image
|
60 |
image_path = 'path/to/your/image.jpg'
|
61 |
image = Image.open(image_path)
|
62 |
image = transform(image)
|
63 |
image = image.unsqueeze(0) # Add batch dimension
|
64 |
|
65 |
# Make a prediction
|
66 |
+
result = classifier(image_path)
|
67 |
+
|
68 |
+
# Extract the predicted label
|
69 |
+
predicted_label = result[0]['label']
|
70 |
|
71 |
# Output the prediction
|
72 |
+
print(f'The predicted class for the image is: {predicted_label}')
|