DineshKumar1329 commited on
Commit
bff3021
1 Parent(s): d4b6683

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -47
README.md CHANGED
@@ -18,50 +18,3 @@ The sentiment analysis model is trained using a Support Vector Machine (SVM) cla
18
 
19
 
20
 
21
-
22
-
23
- - from huggingface_hub import hf_hub_download
24
- - import joblib
25
- - from sklearn.preprocessing import LabelEncoder
26
-
27
- # Download the sentiment analysis model
28
- - model = joblib.load(
29
- hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib")
30
- )
31
-
32
- # Load the TF-IDF vectorizer
33
- tfidf_vectorizer = joblib.load('/content/vectorizer_model.joblib') # Replace with your path
34
-
35
- def clean_text(text):
36
- # Implement your text cleaning logic here (e.g., lowercase, remove punctuation, etc.)
37
- # This example simply lowercases the text
38
- return text.lower()
39
-
40
- def predict_sentiment(user_input):
41
- """Predicts sentiment for a given user input."""
42
- cleaned_text = clean_text(user_input)
43
- input_matrix = tfidf_vectorizer.transform([cleaned_text])
44
- prediction = model.predict(input_matrix)[0]
45
-
46
- if isinstance(model.classes_, LabelEncoder):
47
- prediction = model.classes_.inverse_transform([prediction])[0]
48
-
49
- return prediction
50
-
51
- # Get user input
52
- user_input = input("Enter a sentence: ")
53
-
54
- # Predict sentiment
55
- predicted_sentiment = predict_sentiment(user_input)
56
-
57
- print(f"Predicted Sentiment: {predicted_sentiment}")
58
-
59
- # Optional: Save predictions (modify paths as needed)
60
- try:
61
- df_existing = pd.read_excel('/content/output_predictions.xlsx')
62
- except FileNotFoundError:
63
- df_existing = pd.DataFrame()
64
-
65
- new_prediction = pd.DataFrame({'User_Input': [user_input], 'Predicted_Sentiment': [predicted_sentiment]})
66
- df_combined = pd.concat([df_existing, new_prediction], ignore_index=True)
67
- df_combined.to_excel('/content/output_predictions.xlsx', index=False)
 
18
 
19
 
20