Update README.md
Browse files
README.md
CHANGED
|
@@ -17,4 +17,36 @@ The sentiment analysis model is trained using a Support Vector Machine (SVM) cla
|
|
| 17 |
|
| 18 |
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
|
| 20 |
+
# Usage :
|
| 21 |
+
|
| 22 |
+
from huggingface_hub import hf_hub_download
|
| 23 |
+
import joblib
|
| 24 |
+
from sklearn.preprocessing import LabelEncoder
|
| 25 |
+
|
| 26 |
+
model = joblib.load(
|
| 27 |
+
hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib")
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
tfidf_vectorizer = joblib.load('/content/vectorizer_model.joblib') # Replace with your path
|
| 31 |
+
|
| 32 |
+
def clean_text(text):
|
| 33 |
+
return text.lower()
|
| 34 |
+
|
| 35 |
+
def predict_sentiment(user_input):
|
| 36 |
+
"""Predicts sentiment for a given user input."""
|
| 37 |
+
cleaned_text = clean_text(user_input)
|
| 38 |
+
input_matrix = tfidf_vectorizer.transform([cleaned_text])
|
| 39 |
+
prediction = model.predict(input_matrix)[0]
|
| 40 |
+
|
| 41 |
+
if isinstance(model.classes_, LabelEncoder):
|
| 42 |
+
prediction = model.classes_.inverse_transform([prediction])[0]
|
| 43 |
+
|
| 44 |
+
return prediction
|
| 45 |
+
|
| 46 |
+
user_input = input("Enter a sentence: ")
|
| 47 |
+
|
| 48 |
+
predicted_sentiment = predict_sentiment(user_input)
|
| 49 |
+
|
| 50 |
+
print(f"Predicted Sentiment: {predicted_sentiment}")
|
| 51 |
+
|
| 52 |
|