DineshKumar1329 commited on
Commit
fbff6ba
·
verified ·
1 Parent(s): deaf4de

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -1
README.md CHANGED
@@ -13,4 +13,51 @@ tags:
13
 
14
  ## Model Training
15
 
16
- The sentiment analysis model is trained using a Support Vector Machine (SVM) classifier with a linear kernel. The cleaned text data is transformed into a bag-of-words representation using the CountVectorizer. The trained model is saved as `Sentiment_classifier_model.joblib`, and the corresponding TF-IDF vectorizer is saved as `vectorizer_model.joblib`.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  ## Model Training
15
 
16
+ The sentiment analysis model is trained using a Support Vector Machine (SVM) classifier with a linear kernel. The cleaned text data is transformed into a bag-of-words representation using the CountVectorizer. The trained model is saved as `Sentiment_classifier_model.joblib`, and the corresponding TF-IDF vectorizer is saved as `vectorizer_model.joblib`.
17
+
18
+ # Model Usage :
19
+
20
+ from huggingface_hub import hf_hub_download
21
+ import joblib
22
+ model = joblib.load(
23
+ hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib")
24
+ )
25
+ # only load pickle files from sources you trust
26
+ # read more about it here https://skops.readthedocs.io/en/stable/persistence.html
27
+
28
+ # Load the TF-IDF vectorizer used during training
29
+ tfidf_vectorizer = joblib.load('/content/vectorizer_model.joblib') # Replace with your actual filename
30
+
31
+
32
+ # Take user input
33
+ user_input = input("Enter a sentence: ")
34
+
35
+ # Clean the user input
36
+ cleaned_input = clean_text(user_input)
37
+
38
+ # Transform the cleaned text data using the TF-IDF vectorizer
39
+ input_matrix = tfidf_vectorizer.transform([cleaned_input])
40
+
41
+ # Make prediction
42
+ prediction = model.predict(input_matrix)[0]
43
+
44
+ # Display the prediction
45
+ print(f"Predicted Sentiment: {prediction}")
46
+ # Create a DataFrame with the results
47
+ df_result = pd.DataFrame({'User_Input': [user_input], 'Predicted_Sentiment': [prediction]})
48
+
49
+ # Save the DataFrame to an Excel file (append if the file already exists)
50
+ excel_filename = '/content/output_predictions.xlsx' # Replace with your desired filename
51
+ try:
52
+ # Load existing predictions from the Excel file
53
+ df_existing = pd.read_excel(excel_filename)
54
+
55
+ # Append the new predictions to the existing DataFrame
56
+ df_combined = pd.concat([df_existing, df_result], ignore_index=True)
57
+
58
+ except FileNotFoundError:
59
+ # If the file doesn't exist, create a new DataFrame
60
+ df_combined = df_result
61
+
62
+ # Save the combined DataFrame to the Excel file
63
+ df_combined.to_excel(excel_filename, index=False)