--- license: mit language: - en metrics: - accuracy library_name: sklearn pipeline_tag: text-classification tags: - code --- ## Model Training The sentiment analysis model is trained using a Support Vector Machine (SVM) classifier with a linear kernel. The cleaned text data is transformed into a bag-of-words representation using the CountVectorizer. The trained model is saved as `Sentiment_classifier_model.joblib`, and the corresponding TF-IDF vectorizer is saved as `vectorizer_model.joblib`. # Download the Vectorizer model first and load the model : # Usage : ```python from huggingface_hub import hf_hub_download import joblib from sklearn.preprocessing import LabelEncoder # Download and load the sentiment analysis model from Hugging Face Model Hub model = joblib.load(hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib")) # Load the TF-IDF vectorizer tfidf_vectorizer = joblib.load(hf_hub_download("DineshKumar1329/Sentiment_Analysis", "vectorizer_model.joblib")) def clean_text(text): return text.lower() def predict_sentiment(user_input): """Predicts sentiment for a given user input.""" cleaned_text = clean_text(user_input) input_matrix = tfidf_vectorizer.transform([cleaned_text]) prediction = model.predict(input_matrix)[0] if isinstance(model.classes_, LabelEncoder): prediction = model.classes_.inverse_transform([prediction])[0] return prediction # Get user input user_input = input("Enter a sentence: ") # Predict sentiment predicted_sentiment = predict_sentiment(user_input) # Output the prediction print(f"Predicted Sentiment: {predicted_sentiment}")