--- license: mit language: - en metrics: - accuracy library_name: sklearn pipeline_tag: text-classification tags: - code --- ## Model Training The sentiment analysis model is trained using a Support Vector Machine (SVM) classifier with a linear kernel. The cleaned text data is transformed into a bag-of-words representation using the CountVectorizer. The trained model is saved as `Sentiment_classifier_model.joblib`, and the corresponding TF-IDF vectorizer is saved as `vectorizer_model.joblib`. # Model Usage : from huggingface_hub import hf_hub_download import joblib model = joblib.load( hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib") ) # only load pickle files from sources you trust # read more about it here https://skops.readthedocs.io/en/stable/persistence.html # Load the TF-IDF vectorizer used during training tfidf_vectorizer = joblib.load('/content/vectorizer_model.joblib') # Replace with your actual filename # Take user input user_input = input("Enter a sentence: ") # Clean the user input cleaned_input = clean_text(user_input) # Transform the cleaned text data using the TF-IDF vectorizer input_matrix = tfidf_vectorizer.transform([cleaned_input]) # Make prediction prediction = model.predict(input_matrix)[0] # Display the prediction print(f"Predicted Sentiment: {prediction}") # Create a DataFrame with the results df_result = pd.DataFrame({'User_Input': [user_input], 'Predicted_Sentiment': [prediction]}) # Save the DataFrame to an Excel file (append if the file already exists) excel_filename = '/content/output_predictions.xlsx' # Replace with your desired filename try: # Load existing predictions from the Excel file df_existing = pd.read_excel(excel_filename) # Append the new predictions to the existing DataFrame df_combined = pd.concat([df_existing, df_result], ignore_index=True) except FileNotFoundError: # If the file doesn't exist, create a new DataFrame df_combined = df_result # Save the combined DataFrame to the Excel file df_combined.to_excel(excel_filename, index=False)