File size: 7,366 Bytes
cd8454d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# -*- coding: utf-8 -*-

# This project combines the TN and G2P functions of https://github.com/RVC-Boss/GPT-SoVITS and https://github.com/wenet-e2e/WeTextProcessing
# Huawei Technologies Co., Ltd. (authors: Xiao Chen)

from re import M
from tn.chinese.normalizer import Normalizer as ZhNormalizer
from tn.english.normalizer import Normalizer as EnNormalizer
import LangSegment
from text import symbols as symbols_v1
from text.chinese import replace_consecutive_punctuation, replace_punctuation_with_en, replace_punctuation
import sys


TN_MODULES = {'baidu', 'wenet'}

PUNCT_NORMALIZE = {',': ',', '。': '.', '、': ',', ';': ',', '‘': ',', '【': ',', '】': ',', '·': ',', '《': ',', '》': ',', '?': '?',
                   ':': ',', '“': ',', '”': ',', '!': '!', '…': ',', ')': ',', '(': ',', '〃': ',', '〈': ',', '〉': ',',
                   '「': ',', '」': ',', '『': ',', '』': ',', '〖': ',', '〔': ',', '〕': ',', '〗': ',', '〞': ',', '〝': ',', '﹚': ',',
                   '﹙': ',', '﹛': ',', '﹜': ',', '﹝': ',', '﹞': ',', '!': '!', '"': ',', ''': ',', '︐': ',', '︑': ',', '︒': ',',
                   '︔': ',', '︓': ',', '︕': '!', '︖': '?', '︗': ',', '︘': ',', '︙': ',', '︰': ',', '︱': ',', '︳': ',', '︵': ',',
                   '︶': ',', '︷': ',', '︸': ',', '︹': ',', '︺': ',', '︻': ',', '︼': ',', '︽': ',', '︾': ',', '︿': ',', '﹀': ',',
                   '﹁': ',', '﹂': ',', '﹃': ',', '﹄': ',', ';': ',', '[': ',', ']': ',', '`': ',', ':': ',', '"': ',',
                   '{': ',', '}': ',', '~': ',', ')': ',', '(': ',', '_': '"', '’': '\'', '^': ','}

ALPHABET_NORM = {'a': 'a', 'b': 'b', 'c': 'c', 'd': 'd', 'e': 'e', 'f': 'f', 'g': 'g', 'h': 'h', 'i': 'i', 'j': 'j', 'k': 'k', 'l': 'l', 'm': 'm',
                 'n': 'n', 'o': 'o', 'p': 'p', 'q': 'q', 'r': 'r', 's': 's', 't': 't', 'u': 'u', 'v': 'v', 'w': 'w', 'x': 'x', 'y': 'y', 'z': 'z',
                 'A': 'A', 'B': 'B', 'C': 'C', 'D': 'D', 'E': 'E', 'F': 'F', 'G': 'G', 'H': 'H', 'I': 'I', 'J': 'J', 'K': 'K', 'L': 'L', 'M': 'M',
                 'N': 'N', 'O': 'O', 'P': 'P', 'Q': 'Q', 'R': 'R', 'S': 'S', 'T': 'T', 'U': 'U', 'V': 'V', 'W': 'W', 'X': 'X', 'Y': 'Y', 'Z': 'Z'}


def punct_normalization(sent):
    output_sent = ''
    for idx in range(len(sent)):
        if sent[idx] in PUNCT_NORMALIZE:
            output_sent += PUNCT_NORMALIZE[sent[idx]]
        else:
            output_sent += sent[idx]
    return output_sent


def alphabet_normalization(sent):
    output_sent = ''
    for idx in range(len(sent)):
        if sent[idx] in ALPHABET_NORM:
            output_sent += ALPHABET_NORM[sent[idx]]
        else:
            output_sent += sent[idx]
    return output_sent


class MultilingualTN():

    def __init__(self, module="wenet", remove_interjections=False, remove_erhua=True):
        self.tn_module = module
        self.language_module_map = {"zh": "chinese", "en": "english"}
        self.tn_implements = dict()
        if self.tn_module in TN_MODULES:
            if self.tn_module == "baidu":
                for l, m in self.language_module_map.items():
                    self.tn_implements[l] = __import__("text."+m, fromlist=[m])
            else:
                for l, m in self.language_module_map.items():
                    if l == "en":
                        self.tn_implements[l] = EnNormalizer(
                            overwrite_cache=True)
                    else:
                        self.tn_implements[l] = ZhNormalizer(
                            remove_erhua=remove_erhua, remove_interjections=remove_interjections, overwrite_cache=True)
        pass

    def _do_tn(self, text, language="zh"):
        norm_text = ""
        if language in self.language_module_map:
            module = self.tn_implements[language]
        else:
            module = self.tn_implements["zh"]
        if self.tn_module == "baidu":
            if hasattr(module, "text_normalize"):
                norm_text = module.text_normalize(text)
            else:
                norm_text = text
        elif self.tn_module == "wenet":
            if hasattr(module, "normalize"):
                norm_text = module.normalize(text)
            else:
                norm_text = text
        else:
            norm_text = text

        if language == "zh":
            norm_text = replace_punctuation_with_en(norm_text)
        norm_text = replace_consecutive_punctuation(norm_text)
        while "  " in norm_text:
            norm_text = norm_text.replace("  ", " ")
        return norm_text

    def normalize_segment(self, text, language, normalize_punct=False):
        if normalize_punct:
            text = punct_normalization(text)
        
        text = alphabet_normalization(text)
        text = text.lower()

        norm_text = self._do_tn(text, language)
        return norm_text

    def normalize(self, text, language, normalize_punct=False):
        if normalize_punct:
            text = punct_normalization(text)
        
        text = alphabet_normalization(text)
        text = text.lower()

        textlist = []
        langlist = []
        LangSegment.setfilters(["zh", "ja", "en", "ko"])
        if language == "auto":
            for tmp in LangSegment.getTexts(text):
                langlist.append(tmp["lang"])
                textlist.append(tmp["text"])
        else:
            for tmp in LangSegment.getTexts(text):
                if tmp["lang"] == "en":
                    langlist.append(tmp["lang"])
                else:
                    # 因无法区别中日韩文汉字,以用户输入为准
                    langlist.append(language)
                textlist.append(tmp["text"])
        # print(textlist)
        # print(langlist)
        phones_list = []
        norm_text_list = []
        for i in range(len(textlist)):
            lang = langlist[i]
            norm_text = self._do_tn(textlist[i], lang)
            norm_text_list.append(norm_text)
        norm_text = ''.join(norm_text_list)
        return norm_text


if __name__ == '__main__':
    '''
    Testing functions
    '''
    # text = '1983年2月,旅行了2天的儿童和长翅膀的女孩儿:“︘菜单修订后有鱼香肉丝儿、『王道椒香鸡腿〕和川蜀鸡翅?……”it\'s a test.王会计会计算机。which had been in force since 1760.调查员决定调节调查的难度。Article VI, Qing government would be charged an annual interest rate of 5% for the money'
    # text = 'Just Do It系列广告是哪个品牌的?从以下生物中选择出属于“植物”类的生物:\n\nA. 人 \nB. 杨树 \nC. 猫 \nD. 月季花 \nE. 细菌\nF. 真菌\nG. 灌木\n80/20法则是什么?NHTSA将自动驾驶分为多少个级别?√2和π是不是无理数?'
    language = 'zh'
    TN = MultilingualTN()
    sys.stderr.write("Input: ")
    for line in sys.stdin:
        if line.strip() == "exit()":
            exit()
        if len(line.strip()) <= 0:
            sys.stderr.write("Input: ")
            continue
        sys.stdout.write("{}\n".format(TN.normalize(
            line.strip(), language="zh", normalize_punct=True)))
        sys.stderr.write("Input: ")