File size: 11,421 Bytes
de31e1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# coding=utf-8
# Copyright 2025 Charles O. Goddard, The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# The following monkeypatches were applied by Doctor Shotgun:
#
# Liger Kernel (https://github.com/linkedin/Liger-Kernel):
# 1. Liger RMSNorm
# 2. Liger RoPE
# 3. Liger SwiGLUMLP
# 4. Liger Fused Linear Cross-Entropy
"""PyTorch Qwen3 model with shared expert support."""

from typing import List, Optional, Union

import torch
from torch import nn
import torch.nn.functional as F

# Liger Patch #
from liger_kernel.transformers.rms_norm import LigerRMSNorm
from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP
from liger_kernel.transformers.rope import liger_rotary_pos_emb
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss

import transformers.models.qwen3_moe.modeling_qwen3_moe
transformers.models.qwen3_moe.modeling_qwen3_moe.Qwen3MoeRMSNorm = LigerRMSNorm
transformers.models.qwen3_moe.modeling_qwen3_moe.Qwen3MoeMLP = LigerQwen3MoeSwiGLUMLP
transformers.models.qwen3_moe.modeling_qwen3_moe.apply_rotary_pos_emb = liger_rotary_pos_emb
# Liger Patch #

from transformers.modeling_outputs import (
    MoeCausalLMOutputWithPast,
    MoeModelOutputWithPast,
)
from transformers.activations import ACT2FN
from transformers.utils import logging
from transformers.models.mixtral.modeling_mixtral import (
    load_balancing_loss_func,
)
from transformers.models.qwen3_moe.modeling_qwen3_moe import (
    Qwen3MoeMLP,
    Qwen3MoeRMSNorm,
    Qwen3MoeAttention,
    Qwen3MoeDecoderLayer,
    Qwen3MoeModel,
    Qwen3MoeForCausalLM,
)
from .configuration_qwen3_shared_moe import Qwen3SharedMoeConfig

import scattermoe


logger = logging.get_logger(__name__)


class Qwen3SharedMoeSparseMoeBlock(nn.Module):
    def __init__(self, config: Qwen3SharedMoeConfig):
        super().__init__()
        self.config = config
        self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
        if config.shared_expert_intermediate_size is not None:
            self.shared_expert = Qwen3MoeMLP(
                config, intermediate_size=config.shared_expert_intermediate_size
            )
        else:
            self.shared_expert = None
        self.moe_mlp = scattermoe.mlp.GLUMLP(
            input_size=self.config.hidden_size,
            hidden_size=self.config.moe_intermediate_size,
            num_experts=self.config.num_experts,
            top_k=self.config.num_experts_per_tok,
            activation=ACT2FN[config.hidden_act],
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # handling of gate/router logits copied from Qwen3MoeSparseMoeBlock
        batch_size, sequence_length, hidden_dim = hidden_states.shape
        hidden_states = hidden_states.view(-1, hidden_dim)
        # router_logits: (batch * sequence_length, n_experts)
        router_logits = self.gate(hidden_states)

        routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
        routing_weights, selected_experts = torch.topk(
            routing_weights, self.config.num_experts_per_tok, dim=-1
        )
        if self.config.norm_topk_prob:  # only diff with mixtral sparse moe block!
            routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
        # we cast back to the input dtype
        routing_weights = routing_weights.to(hidden_states.dtype)

        # modified here to use scattermoe + shared_expert
        hs_0 = self.moe_mlp(hidden_states, routing_weights, selected_experts)

        if self.shared_expert is not None:
            shared_res = self.shared_expert(hidden_states)
            res = hs_0 + shared_res
        else:
            res = hs_0
        res = res.reshape(batch_size, sequence_length, hidden_dim)
        return res, router_logits


class Qwen3SharedMoeDecoderLayer(Qwen3MoeDecoderLayer, nn.Module):
    def __init__(self, config: Qwen3SharedMoeConfig, layer_idx: int):
        super().__init__(config, layer_idx)
        self.hidden_size = config.hidden_size

        self.self_attn = Qwen3MoeAttention(config, layer_idx)

        if (layer_idx not in config.mlp_only_layers) and (
            config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0
        ):
            self.mlp = Qwen3SharedMoeSparseMoeBlock(config)
        else:
            self.mlp = Qwen3MoeMLP(config, intermediate_size=config.intermediate_size)

        self.input_layernorm = Qwen3MoeRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )
        self.post_attention_layernorm = Qwen3MoeRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )


class Qwen3SharedMoeModel(Qwen3MoeModel):
    config_class = Qwen3SharedMoeConfig

    def __init__(self, config: Qwen3SharedMoeConfig):
        super().__init__(config)
        self.layers = nn.ModuleList(
            [
                Qwen3SharedMoeDecoderLayer(config, layer_idx)
                for layer_idx in range(config.num_hidden_layers)
            ]
        )


class Qwen3SharedMoeForCausalLM(Qwen3MoeForCausalLM):
    config_class = Qwen3SharedMoeConfig

    def __init__(self, config):
        super().__init__(config)
        self.model = Qwen3SharedMoeModel(config)
        self.num_experts = config.num_experts

    # Liger Patch #
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_router_logits: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        skip_logits: Optional[bool] = None,
        **kwargs,
    ) -> MoeCausalLMOutputWithPast:
        r"""
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

            logits_to_keep (`int` or `torch.Tensor`, *optional*):
                If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
                `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
                token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
                If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
                This is useful when using packed tensor format (single dimension for batch and sequence length).

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, Qwen3MoeForCausalLM

        >>> model = Qwen3MoeForCausalLM.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
        >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_router_logits = (
            output_router_logits if output_router_logits is not None else self.config.output_router_logits
        )

        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs: MoeModelOutputWithPast = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_router_logits=output_router_logits,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = outputs.last_hidden_state
        # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        kept_hidden_states = hidden_states[:, slice_indices, :]

        shift_labels = kwargs.pop("shift_labels", None)
        logits = None
        loss = None

        if skip_logits is None:
            skip_logits = self.training and (labels is not None or shift_labels is not None)

        if skip_logits:
            loss = LigerForCausalLMLoss(
                hidden_states=kept_hidden_states,
                lm_head_weight=self.lm_head.weight,
                labels=labels,
                shift_labels=shift_labels,
                hidden_size=self.config.hidden_size,
                **kwargs,
            )
        else:  # if in inference model materialize logits
            logits = self.lm_head(kept_hidden_states)
            if labels is not None:
                loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)

        aux_loss = None
        if output_router_logits:
            aux_loss = load_balancing_loss_func(
                outputs.router_logits,
                self.num_experts,
                self.num_experts_per_tok,
                attention_mask,
            )
            if labels is not None:
                loss += self.router_aux_loss_coef * aux_loss.to(loss.device)  # make sure to reside in the same device

        return MoeCausalLMOutputWithPast(
            loss=loss,
            aux_loss=aux_loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            router_logits=outputs.router_logits,
        )
    # Liger Patch #