# coding=utf-8 # Copyright 2025 Charles O. Goddard, The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # The following monkeypatches were applied by Doctor Shotgun: # # Liger Kernel (https://github.com/linkedin/Liger-Kernel): # 1. Liger RMSNorm # 2. Liger RoPE # 3. Liger SwiGLUMLP # 4. Liger Fused Linear Cross-Entropy """PyTorch Qwen3 model with shared expert support.""" from typing import List, Optional, Union import torch from torch import nn import torch.nn.functional as F # Liger Patch # from liger_kernel.transformers.rms_norm import LigerRMSNorm from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP from liger_kernel.transformers.rope import liger_rotary_pos_emb from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss import transformers.models.qwen3_moe.modeling_qwen3_moe transformers.models.qwen3_moe.modeling_qwen3_moe.Qwen3MoeRMSNorm = LigerRMSNorm transformers.models.qwen3_moe.modeling_qwen3_moe.Qwen3MoeMLP = LigerQwen3MoeSwiGLUMLP transformers.models.qwen3_moe.modeling_qwen3_moe.apply_rotary_pos_emb = liger_rotary_pos_emb # Liger Patch # from transformers.modeling_outputs import ( MoeCausalLMOutputWithPast, MoeModelOutputWithPast, ) from transformers.activations import ACT2FN from transformers.utils import logging from transformers.models.mixtral.modeling_mixtral import ( load_balancing_loss_func, ) from transformers.models.qwen3_moe.modeling_qwen3_moe import ( Qwen3MoeMLP, Qwen3MoeRMSNorm, Qwen3MoeAttention, Qwen3MoeDecoderLayer, Qwen3MoeModel, Qwen3MoeForCausalLM, ) from .configuration_qwen3_shared_moe import Qwen3SharedMoeConfig import scattermoe logger = logging.get_logger(__name__) class Qwen3SharedMoeSparseMoeBlock(nn.Module): def __init__(self, config: Qwen3SharedMoeConfig): super().__init__() self.config = config self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False) if config.shared_expert_intermediate_size is not None: self.shared_expert = Qwen3MoeMLP( config, intermediate_size=config.shared_expert_intermediate_size ) else: self.shared_expert = None self.moe_mlp = scattermoe.mlp.GLUMLP( input_size=self.config.hidden_size, hidden_size=self.config.moe_intermediate_size, num_experts=self.config.num_experts, top_k=self.config.num_experts_per_tok, activation=ACT2FN[config.hidden_act], ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # handling of gate/router logits copied from Qwen3MoeSparseMoeBlock batch_size, sequence_length, hidden_dim = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_dim) # router_logits: (batch * sequence_length, n_experts) router_logits = self.gate(hidden_states) routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) routing_weights, selected_experts = torch.topk( routing_weights, self.config.num_experts_per_tok, dim=-1 ) if self.config.norm_topk_prob: # only diff with mixtral sparse moe block! routing_weights /= routing_weights.sum(dim=-1, keepdim=True) # we cast back to the input dtype routing_weights = routing_weights.to(hidden_states.dtype) # modified here to use scattermoe + shared_expert hs_0 = self.moe_mlp(hidden_states, routing_weights, selected_experts) if self.shared_expert is not None: shared_res = self.shared_expert(hidden_states) res = hs_0 + shared_res else: res = hs_0 res = res.reshape(batch_size, sequence_length, hidden_dim) return res, router_logits class Qwen3SharedMoeDecoderLayer(Qwen3MoeDecoderLayer, nn.Module): def __init__(self, config: Qwen3SharedMoeConfig, layer_idx: int): super().__init__(config, layer_idx) self.hidden_size = config.hidden_size self.self_attn = Qwen3MoeAttention(config, layer_idx) if (layer_idx not in config.mlp_only_layers) and ( config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0 ): self.mlp = Qwen3SharedMoeSparseMoeBlock(config) else: self.mlp = Qwen3MoeMLP(config, intermediate_size=config.intermediate_size) self.input_layernorm = Qwen3MoeRMSNorm( config.hidden_size, eps=config.rms_norm_eps ) self.post_attention_layernorm = Qwen3MoeRMSNorm( config.hidden_size, eps=config.rms_norm_eps ) class Qwen3SharedMoeModel(Qwen3MoeModel): config_class = Qwen3SharedMoeConfig def __init__(self, config: Qwen3SharedMoeConfig): super().__init__(config) self.layers = nn.ModuleList( [ Qwen3SharedMoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers) ] ) class Qwen3SharedMoeForCausalLM(Qwen3MoeForCausalLM): config_class = Qwen3SharedMoeConfig def __init__(self, config): super().__init__(config) self.model = Qwen3SharedMoeModel(config) self.num_experts = config.num_experts # Liger Patch # def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, skip_logits: Optional[bool] = None, **kwargs, ) -> MoeCausalLMOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from transformers import AutoTokenizer, Qwen3MoeForCausalLM >>> model = Qwen3MoeForCausalLM.from_pretrained("Qwen/Qwen3-MoE-15B-A2B") >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-MoE-15B-A2B") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs: MoeModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, cache_position=cache_position, **kwargs, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep kept_hidden_states = hidden_states[:, slice_indices, :] shift_labels = kwargs.pop("shift_labels", None) logits = None loss = None if skip_logits is None: skip_logits = self.training and (labels is not None or shift_labels is not None) if skip_logits: loss = LigerForCausalLMLoss( hidden_states=kept_hidden_states, lm_head_weight=self.lm_head.weight, labels=labels, shift_labels=shift_labels, hidden_size=self.config.hidden_size, **kwargs, ) else: # if in inference model materialize logits logits = self.lm_head(kept_hidden_states) if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **kwargs) aux_loss = None if output_router_logits: aux_loss = load_balancing_loss_func( outputs.router_logits, self.num_experts, self.num_experts_per_tok, attention_mask, ) if labels is not None: loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device return MoeCausalLMOutputWithPast( loss=loss, aux_loss=aux_loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, router_logits=outputs.router_logits, ) # Liger Patch #