File size: 3,793 Bytes
5c02343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import glob
import re
import shutil
import sys

import accelerate
import torch
from configuration_qwen3_shared_moe import Qwen3SharedMoeConfig
from safetensors import safe_open
from transformers.models.qwen3_moe.configuration_qwen3_moe import Qwen3MoeConfig
from transformers.models.qwen3_moe.modeling_qwen3_moe import Qwen3MoeForCausalLM

input_model = sys.argv[1]
output_model_path = sys.argv[2]

cfg_shared_moe = Qwen3SharedMoeConfig.from_pretrained(input_model)
cfg_standard_moe = Qwen3MoeConfig(
    vocab_size=cfg_shared_moe.vocab_size,
    hidden_size=cfg_shared_moe.hidden_size,
    intermediate_size=cfg_shared_moe.intermediate_size,
    num_hidden_layers=cfg_shared_moe.num_hidden_layers,
    num_attention_heads=cfg_shared_moe.num_attention_heads,
    num_key_value_heads=cfg_shared_moe.num_key_value_heads,
    hidden_act=cfg_shared_moe.hidden_act,
    max_position_embeddings=cfg_shared_moe.max_position_embeddings,
    initializer_range=cfg_shared_moe.initializer_range,
    rms_norm_eps=cfg_shared_moe.rms_norm_eps,
    use_cache=cfg_shared_moe.use_cache,
    tie_word_embeddings=cfg_shared_moe.tie_word_embeddings,
    rope_theta=cfg_shared_moe.rope_theta,
    rope_scaling=cfg_shared_moe.rope_scaling,
    attention_bias=cfg_shared_moe.attention_bias,
    use_sliding_window=cfg_shared_moe.use_sliding_window,
    sliding_window=cfg_shared_moe.sliding_window,
    max_window_layers=cfg_shared_moe.max_window_layers,
    attention_dropout=cfg_shared_moe.attention_dropout,
    decoder_sparse_step=cfg_shared_moe.decoder_sparse_step,
    moe_intermediate_size=cfg_shared_moe.moe_intermediate_size,
    num_experts_per_tok=cfg_shared_moe.num_experts_per_tok,
    num_experts=cfg_shared_moe.num_experts,
    norm_topk_prob=cfg_shared_moe.norm_topk_prob,
    output_router_logits=cfg_shared_moe.output_router_logits,
    router_aux_loss_coef=cfg_shared_moe.router_aux_loss_coef,
    mlp_only_layers=cfg_shared_moe.mlp_only_layers,
    head_dim=cfg_shared_moe.head_dim,
)
num_experts = cfg_standard_moe.num_experts

with accelerate.init_empty_weights():
    model_standard_moe = Qwen3MoeForCausalLM(cfg_shared_moe)

model_standard_moe = model_standard_moe.to(torch.bfloat16)
new_state_dict = {}
pattern = f"{input_model}/model-*-of-*.safetensors"
files = sorted(glob.glob(pattern))

if len(files) == 0:
    raise FileNotFoundError
tensors = {}

for file_path in files:
    print(f"processing {file_path}")
    with safe_open(file_path, framework="pt", device="cpu") as f:
        for key in f.keys():
            tensor = f.get_tensor(key)
            tensors[key] = tensor

for key in tensors:
    if "moe_mlp" not in key:
        new_state_dict[key] = tensors[key]
    elif "moe_mlp.output_experts" in key:
        layer_num = int(re.search(r"\d+", key).group())
        for i, tensor in enumerate(torch.unbind(tensors[key])):
            new_state_dict[
                f"model.layers.{layer_num}.mlp.experts.{i}.down_proj.weight"
            ] = tensor.contiguous()
    elif "moe_mlp.experts" in key:
        layer_num = int(re.search(r"\d+", key).group())
        for i, tensor in enumerate(torch.unbind(tensors[key])):
            (
                new_state_dict[
                    f"model.layers.{layer_num}.mlp.experts.{i}.up_proj.weight"
                ],
                new_state_dict[
                    f"model.layers.{layer_num}.mlp.experts.{i}.gate_proj.weight"
                ],
            ) = torch.chunk(tensor, 2, dim=0)

model_standard_moe.load_state_dict(new_state_dict, strict=True, assign=True)
model_standard_moe.save_pretrained(output_model_path)
cfg_standard_moe.save_pretrained(output_model_path)

for i in ["merges.txt", "tokenizer_config.json", "tokenizer.json", "vocab.json"]:
    shutil.copy(input_model + "/" + i, output_model_path + "/" + i)