Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model:
|
4 |
+
- Qwen/Qwen3-Coder-30B-A3B-Instruct
|
5 |
+
library_name: transformers
|
6 |
+
---
|
7 |
+
|
8 |
+
# Qwen3-Coder-30B-A3B-Instruct-ScatterMoE
|
9 |
+
|
10 |
+
Re-packed weights of [Qwen/Qwen3-Coder-30B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct) using [Charles Goddard](https://huggingface.co/chargoddard)'s remote code implementation of [scattermoe](https://github.com/shawntan/scattermoe), including scripts to convert to and from standard `Qwen3MoeForCausalLM`. Thank you to [intervitens](https://huggingface.co/intervitens) for assistance with memory-efficient conversion scripts!
|
11 |
+
|
12 |
+
This is intended to be used as a drop-in replacement for efficient training using any `transformers`-based training repository.
|
13 |
+
|
14 |
+
Optional monkeypatches included for [Liger Kernel](https://github.com/linkedin/Liger-Kernel) and [Cut Cross-Entropy](https://github.com/apple/ml-cross-entropy). Simply rename the relevant modeling file to `modeling_qwen3_shared_moe.py`.
|
15 |
+
|
16 |
+
## Citations
|
17 |
+
|
18 |
+
```
|
19 |
+
@misc{qwen3technicalreport,
|
20 |
+
title={Qwen3 Technical Report},
|
21 |
+
author={Qwen Team},
|
22 |
+
year={2025},
|
23 |
+
eprint={2505.09388},
|
24 |
+
archivePrefix={arXiv},
|
25 |
+
primaryClass={cs.CL},
|
26 |
+
url={https://arxiv.org/abs/2505.09388},
|
27 |
+
}
|
28 |
+
|
29 |
+
@misc{tan2024scatteredmixtureofexpertsimplementation,
|
30 |
+
title={Scattered Mixture-of-Experts Implementation},
|
31 |
+
author={Shawn Tan and Yikang Shen and Rameswar Panda and Aaron Courville},
|
32 |
+
year={2024},
|
33 |
+
eprint={2403.08245},
|
34 |
+
archivePrefix={arXiv},
|
35 |
+
primaryClass={cs.LG},
|
36 |
+
url={https://arxiv.org/abs/2403.08245},
|
37 |
+
}
|
38 |
+
|
39 |
+
@misc{hsu2025ligerkernelefficienttriton,
|
40 |
+
title={Liger Kernel: Efficient Triton Kernels for LLM Training},
|
41 |
+
author={Pin-Lun Hsu and Yun Dai and Vignesh Kothapalli and Qingquan Song and Shao Tang and Siyu Zhu and Steven Shimizu and Shivam Sahni and Haowen Ning and Yanning Chen},
|
42 |
+
year={2025},
|
43 |
+
eprint={2410.10989},
|
44 |
+
archivePrefix={arXiv},
|
45 |
+
primaryClass={cs.LG},
|
46 |
+
url={https://arxiv.org/abs/2410.10989},
|
47 |
+
}
|
48 |
+
|
49 |
+
@misc{wijmans2025cutlosseslargevocabularylanguage,
|
50 |
+
title={Cut Your Losses in Large-Vocabulary Language Models},
|
51 |
+
author={Erik Wijmans and Brody Huval and Alexander Hertzberg and Vladlen Koltun and Philipp Krähenbühl},
|
52 |
+
year={2025},
|
53 |
+
eprint={2411.09009},
|
54 |
+
archivePrefix={arXiv},
|
55 |
+
primaryClass={cs.LG},
|
56 |
+
url={https://arxiv.org/abs/2411.09009},
|
57 |
+
}
|
58 |
+
```
|