DrBom commited on
Commit
ea16562
·
verified ·
1 Parent(s): 4d7f13c

End of training

Browse files
README.md CHANGED
@@ -1,199 +1,137 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: other
4
+ base_model: nvidia/mit-b0
5
+ tags:
6
+ - vision
7
+ - image-segmentation
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: segformer-b0-finetuned-segments-sidewalk-2
11
+ results: []
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # segformer-b0-finetuned-segments-sidewalk-2
18
+
19
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.5234
22
+ - Mean Iou: 0.3126
23
+ - Mean Accuracy: 0.3724
24
+ - Overall Accuracy: 0.8581
25
+ - Accuracy Unlabeled: nan
26
+ - Accuracy Flat-road: 0.8770
27
+ - Accuracy Flat-sidewalk: 0.9523
28
+ - Accuracy Flat-crosswalk: 0.8485
29
+ - Accuracy Flat-cyclinglane: 0.8272
30
+ - Accuracy Flat-parkingdriveway: 0.4816
31
+ - Accuracy Flat-railtrack: nan
32
+ - Accuracy Flat-curb: 0.4909
33
+ - Accuracy Human-person: 0.6546
34
+ - Accuracy Human-rider: 0.0
35
+ - Accuracy Vehicle-car: 0.9390
36
+ - Accuracy Vehicle-truck: 0.0
37
+ - Accuracy Vehicle-bus: nan
38
+ - Accuracy Vehicle-tramtrain: 0.0
39
+ - Accuracy Vehicle-motorcycle: 0.0
40
+ - Accuracy Vehicle-bicycle: 0.3174
41
+ - Accuracy Vehicle-caravan: 0.0
42
+ - Accuracy Vehicle-cartrailer: 0.0
43
+ - Accuracy Construction-building: 0.8992
44
+ - Accuracy Construction-door: 0.0
45
+ - Accuracy Construction-wall: 0.4759
46
+ - Accuracy Construction-fenceguardrail: 0.5201
47
+ - Accuracy Construction-bridge: 0.0
48
+ - Accuracy Construction-tunnel: nan
49
+ - Accuracy Construction-stairs: 0.0
50
+ - Accuracy Object-pole: 0.2217
51
+ - Accuracy Object-trafficsign: 0.0
52
+ - Accuracy Object-trafficlight: 0.0
53
+ - Accuracy Nature-vegetation: 0.9260
54
+ - Accuracy Nature-terrain: 0.8821
55
+ - Accuracy Sky: 0.9643
56
+ - Accuracy Void-ground: 0.0
57
+ - Accuracy Void-dynamic: 0.0
58
+ - Accuracy Void-static: 0.2678
59
+ - Accuracy Void-unclear: 0.0
60
+ - Iou Unlabeled: nan
61
+ - Iou Flat-road: 0.7316
62
+ - Iou Flat-sidewalk: 0.8854
63
+ - Iou Flat-crosswalk: 0.7310
64
+ - Iou Flat-cyclinglane: 0.7641
65
+ - Iou Flat-parkingdriveway: 0.3722
66
+ - Iou Flat-railtrack: nan
67
+ - Iou Flat-curb: 0.3550
68
+ - Iou Human-person: 0.4225
69
+ - Iou Human-rider: 0.0
70
+ - Iou Vehicle-car: 0.7847
71
+ - Iou Vehicle-truck: 0.0
72
+ - Iou Vehicle-bus: nan
73
+ - Iou Vehicle-tramtrain: 0.0
74
+ - Iou Vehicle-motorcycle: 0.0
75
+ - Iou Vehicle-bicycle: 0.2941
76
+ - Iou Vehicle-caravan: 0.0
77
+ - Iou Vehicle-cartrailer: 0.0
78
+ - Iou Construction-building: 0.7100
79
+ - Iou Construction-door: 0.0
80
+ - Iou Construction-wall: 0.3331
81
+ - Iou Construction-fenceguardrail: 0.3969
82
+ - Iou Construction-bridge: 0.0
83
+ - Iou Construction-tunnel: nan
84
+ - Iou Construction-stairs: 0.0
85
+ - Iou Object-pole: 0.1649
86
+ - Iou Object-trafficsign: 0.0
87
+ - Iou Object-trafficlight: 0.0
88
+ - Iou Nature-vegetation: 0.8508
89
+ - Iou Nature-terrain: 0.7558
90
+ - Iou Sky: 0.9201
91
+ - Iou Void-ground: 0.0
92
+ - Iou Void-dynamic: 0.0
93
+ - Iou Void-static: 0.2191
94
+ - Iou Void-unclear: 0.0
95
+
96
+ ## Model description
97
+
98
+ More information needed
99
+
100
+ ## Intended uses & limitations
101
+
102
+ More information needed
103
+
104
+ ## Training and evaluation data
105
+
106
+ More information needed
107
+
108
+ ## Training procedure
109
+
110
+ ### Training hyperparameters
111
+
112
+ The following hyperparameters were used during training:
113
+ - learning_rate: 2e-05
114
+ - train_batch_size: 16
115
+ - eval_batch_size: 16
116
+ - seed: 42
117
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
118
+ - lr_scheduler_type: linear
119
+ - num_epochs: 50
120
+
121
+ ### Training results
122
+
123
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
124
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
125
+ | 0.522 | 10.0 | 500 | 0.5791 | 0.2833 | 0.3397 | 0.8440 | nan | 0.8636 | 0.9512 | 0.8602 | 0.7964 | 0.4563 | nan | 0.4273 | 0.4433 | 0.0 | 0.9362 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8736 | 0.0 | 0.5360 | 0.3822 | 0.0 | nan | 0.0 | 0.1408 | 0.0 | 0.0 | 0.9296 | 0.8815 | 0.9592 | 0.0 | 0.0 | 0.0930 | 0.0 | nan | 0.7130 | 0.8766 | 0.7296 | 0.7177 | 0.3374 | nan | 0.3184 | 0.3476 | 0.0 | 0.7343 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6853 | 0.0 | 0.3241 | 0.3188 | 0.0 | nan | 0.0 | 0.1067 | 0.0 | 0.0 | 0.8373 | 0.7432 | 0.9067 | 0.0 | 0.0 | 0.0842 | 0.0 |
126
+ | 0.3419 | 20.0 | 1000 | 0.5479 | 0.2940 | 0.3564 | 0.8488 | nan | 0.8365 | 0.9463 | 0.8573 | 0.8328 | 0.4997 | nan | 0.4725 | 0.6224 | 0.0 | 0.9380 | 0.0 | nan | 0.0 | 0.0 | 0.0164 | 0.0 | 0.0 | 0.8911 | 0.0 | 0.4705 | 0.5028 | 0.0 | nan | 0.0 | 0.1982 | 0.0 | 0.0 | 0.9274 | 0.8762 | 0.9628 | 0.0 | 0.0 | 0.1976 | 0.0 | nan | 0.7062 | 0.8809 | 0.7043 | 0.7137 | 0.3615 | nan | 0.3403 | 0.4065 | 0.0 | 0.7574 | 0.0 | nan | 0.0 | 0.0 | 0.0164 | 0.0 | 0.0 | 0.7023 | 0.0 | 0.3209 | 0.3770 | 0.0 | nan | 0.0 | 0.1429 | 0.0 | 0.0 | 0.8473 | 0.7526 | 0.9139 | 0.0 | 0.0 | 0.1701 | 0.0 |
127
+ | 0.3486 | 30.0 | 1500 | 0.5321 | 0.3037 | 0.3650 | 0.8542 | nan | 0.8657 | 0.9479 | 0.8389 | 0.8365 | 0.4912 | nan | 0.4700 | 0.6601 | 0.0 | 0.9401 | 0.0 | nan | 0.0 | 0.0 | 0.1585 | 0.0 | 0.0 | 0.8840 | 0.0 | 0.4615 | 0.5186 | 0.0 | nan | 0.0 | 0.2152 | 0.0 | 0.0 | 0.9337 | 0.8777 | 0.9651 | 0.0 | 0.0 | 0.2518 | 0.0 | nan | 0.7256 | 0.8839 | 0.7103 | 0.7474 | 0.3673 | nan | 0.3427 | 0.4156 | 0.0 | 0.7694 | 0.0 | nan | 0.0 | 0.0 | 0.1545 | 0.0 | 0.0 | 0.7056 | 0.0 | 0.3170 | 0.3888 | 0.0 | nan | 0.0 | 0.1569 | 0.0 | 0.0 | 0.8487 | 0.7562 | 0.9172 | 0.0 | 0.0 | 0.2068 | 0.0 |
128
+ | 0.405 | 40.0 | 2000 | 0.5256 | 0.3101 | 0.3696 | 0.8569 | nan | 0.8635 | 0.9520 | 0.8452 | 0.8387 | 0.4748 | nan | 0.4860 | 0.6552 | 0.0 | 0.9395 | 0.0 | nan | 0.0 | 0.0 | 0.2844 | 0.0 | 0.0 | 0.9020 | 0.0 | 0.4572 | 0.5207 | 0.0 | nan | 0.0 | 0.2120 | 0.0 | 0.0 | 0.9275 | 0.8817 | 0.9647 | 0.0 | 0.0 | 0.2518 | 0.0 | nan | 0.7266 | 0.8842 | 0.7331 | 0.7556 | 0.3654 | nan | 0.3504 | 0.4206 | 0.0 | 0.7803 | 0.0 | nan | 0.0 | 0.0 | 0.2665 | 0.0 | 0.0 | 0.7098 | 0.0 | 0.3327 | 0.3923 | 0.0 | nan | 0.0 | 0.1603 | 0.0 | 0.0 | 0.8511 | 0.7559 | 0.9196 | 0.0 | 0.0 | 0.2095 | 0.0 |
129
+ | 0.3626 | 50.0 | 2500 | 0.5234 | 0.3126 | 0.3724 | 0.8581 | nan | 0.8770 | 0.9523 | 0.8485 | 0.8272 | 0.4816 | nan | 0.4909 | 0.6546 | 0.0 | 0.9390 | 0.0 | nan | 0.0 | 0.0 | 0.3174 | 0.0 | 0.0 | 0.8992 | 0.0 | 0.4759 | 0.5201 | 0.0 | nan | 0.0 | 0.2217 | 0.0 | 0.0 | 0.9260 | 0.8821 | 0.9643 | 0.0 | 0.0 | 0.2678 | 0.0 | nan | 0.7316 | 0.8854 | 0.7310 | 0.7641 | 0.3722 | nan | 0.3550 | 0.4225 | 0.0 | 0.7847 | 0.0 | nan | 0.0 | 0.0 | 0.2941 | 0.0 | 0.0 | 0.7100 | 0.0 | 0.3331 | 0.3969 | 0.0 | nan | 0.0 | 0.1649 | 0.0 | 0.0 | 0.8508 | 0.7558 | 0.9201 | 0.0 | 0.0 | 0.2191 | 0.0 |
130
+
131
+
132
+ ### Framework versions
133
+
134
+ - Transformers 4.53.0
135
+ - Pytorch 2.7.1+cu126
136
+ - Datasets 3.6.0
137
+ - Tokenizers 0.21.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SegformerForSemanticSegmentation"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.0,
6
+ "classifier_dropout_prob": 0.1,
7
+ "decoder_hidden_size": 256,
8
+ "depths": [
9
+ 2,
10
+ 2,
11
+ 2,
12
+ 2
13
+ ],
14
+ "downsampling_rates": [
15
+ 1,
16
+ 4,
17
+ 8,
18
+ 16
19
+ ],
20
+ "drop_path_rate": 0.1,
21
+ "hidden_act": "gelu",
22
+ "hidden_dropout_prob": 0.0,
23
+ "hidden_sizes": [
24
+ 32,
25
+ 64,
26
+ 160,
27
+ 256
28
+ ],
29
+ "id2label": {
30
+ "0": "unlabeled",
31
+ "1": "flat-road",
32
+ "2": "flat-sidewalk",
33
+ "3": "flat-crosswalk",
34
+ "4": "flat-cyclinglane",
35
+ "5": "flat-parkingdriveway",
36
+ "6": "flat-railtrack",
37
+ "7": "flat-curb",
38
+ "8": "human-person",
39
+ "9": "human-rider",
40
+ "10": "vehicle-car",
41
+ "11": "vehicle-truck",
42
+ "12": "vehicle-bus",
43
+ "13": "vehicle-tramtrain",
44
+ "14": "vehicle-motorcycle",
45
+ "15": "vehicle-bicycle",
46
+ "16": "vehicle-caravan",
47
+ "17": "vehicle-cartrailer",
48
+ "18": "construction-building",
49
+ "19": "construction-door",
50
+ "20": "construction-wall",
51
+ "21": "construction-fenceguardrail",
52
+ "22": "construction-bridge",
53
+ "23": "construction-tunnel",
54
+ "24": "construction-stairs",
55
+ "25": "object-pole",
56
+ "26": "object-trafficsign",
57
+ "27": "object-trafficlight",
58
+ "28": "nature-vegetation",
59
+ "29": "nature-terrain",
60
+ "30": "sky",
61
+ "31": "void-ground",
62
+ "32": "void-dynamic",
63
+ "33": "void-static",
64
+ "34": "void-unclear"
65
+ },
66
+ "image_size": 224,
67
+ "initializer_range": 0.02,
68
+ "label2id": {
69
+ "construction-bridge": 22,
70
+ "construction-building": 18,
71
+ "construction-door": 19,
72
+ "construction-fenceguardrail": 21,
73
+ "construction-stairs": 24,
74
+ "construction-tunnel": 23,
75
+ "construction-wall": 20,
76
+ "flat-crosswalk": 3,
77
+ "flat-curb": 7,
78
+ "flat-cyclinglane": 4,
79
+ "flat-parkingdriveway": 5,
80
+ "flat-railtrack": 6,
81
+ "flat-road": 1,
82
+ "flat-sidewalk": 2,
83
+ "human-person": 8,
84
+ "human-rider": 9,
85
+ "nature-terrain": 29,
86
+ "nature-vegetation": 28,
87
+ "object-pole": 25,
88
+ "object-trafficlight": 27,
89
+ "object-trafficsign": 26,
90
+ "sky": 30,
91
+ "unlabeled": 0,
92
+ "vehicle-bicycle": 15,
93
+ "vehicle-bus": 12,
94
+ "vehicle-car": 10,
95
+ "vehicle-caravan": 16,
96
+ "vehicle-cartrailer": 17,
97
+ "vehicle-motorcycle": 14,
98
+ "vehicle-tramtrain": 13,
99
+ "vehicle-truck": 11,
100
+ "void-dynamic": 32,
101
+ "void-ground": 31,
102
+ "void-static": 33,
103
+ "void-unclear": 34
104
+ },
105
+ "layer_norm_eps": 1e-06,
106
+ "mlp_ratios": [
107
+ 4,
108
+ 4,
109
+ 4,
110
+ 4
111
+ ],
112
+ "model_type": "segformer",
113
+ "num_attention_heads": [
114
+ 1,
115
+ 2,
116
+ 5,
117
+ 8
118
+ ],
119
+ "num_channels": 3,
120
+ "num_encoder_blocks": 4,
121
+ "patch_sizes": [
122
+ 7,
123
+ 3,
124
+ 3,
125
+ 3
126
+ ],
127
+ "reshape_last_stage": true,
128
+ "semantic_loss_ignore_index": 255,
129
+ "sr_ratios": [
130
+ 8,
131
+ 4,
132
+ 2,
133
+ 1
134
+ ],
135
+ "strides": [
136
+ 4,
137
+ 2,
138
+ 2,
139
+ 2
140
+ ],
141
+ "torch_dtype": "float32",
142
+ "transformers_version": "4.53.0"
143
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c681c3715c38a199f380855e46294df9cb2f84b9c2c31a109db94578c8513df4
3
+ size 14918708
runs/Jul05_06-14-51_MemeMachina9000/events.out.tfevents.1751692527.MemeMachina9000.3478871.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2434fcbfed462bc945c156c84d6697d31bd18387a7a24628c09bcaac29102191
3
+ size 434674
runs/Jul05_06-26-21_MemeMachina9000/events.out.tfevents.1751693186.MemeMachina9000.3478871.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49c8a2ea4cdfb0e908576e3b2a1454216efd24eadd21627f75e369b3a12a292f
3
+ size 13983
runs/Jul05_06-27-06_MemeMachina9000/events.out.tfevents.1751693233.MemeMachina9000.3478871.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e94c9584f8eef858918c18bb384d78d4f9e2c927c1aa2a073eace484bfceb1fe
3
+ size 559702
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9747516c92fbcf09bf56c4238975bcd85e8ecd4fe8fe08712920321ad0913c4c
3
+ size 5841