--- license: apache-2.0 language: - en base_model: - mradermacher/oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF - openai/whisper-large-v3-turbo pipeline_tag: memory-management inference_api: true title: Adaptive Memory Architecture (AMA) description: > A biomimetic, multi-tier memory management system designed to revolutionize how AI systems process, store, and retrieve information. Featuring dynamic semantic embedding, intelligent relationship tracking, and adaptive memory compression. key_features: - Multi-tier memory management - Semantic embedding integration - Dynamic relationship inference - Intelligent memory compression - Contextually aware information processing technical_details: memory_tiers: - volatile_short_term: capacity: 10 items characteristics: - High-speed access - Recent interactions - Cache-like implementation - persistent_long_term: capacity: unlimited characteristics: - Important concept storage - Hierarchical knowledge representation - context_working_memory: capacity: 5 items characteristics: - Current conversation state - Active task parameters performance_metrics: retrieval_speed: O(log n) semantic_similarity_calculation: cosine distance memory_compression_ratio: adaptive research_potential: - Neuromorphic memory modeling - Adaptive learning systems - Cognitive architecture development ethical_considerations: - Transparent memory tracking - Configurable confidence scoring - Relationship type inference code_structure: classes: - name: MemoryItem responsibilities: - Represent individual memory units - Track memory metadata - Manage relationships - name: MemoryTier responsibilities: - Manage memory storage - Implement pruning strategies - Provide retrieval mechanisms - name: MemoryManager responsibilities: - Coordinate memory tiers - Handle memory insertion - Perform semantic searches - name: SemanticEmbedding responsibilities: - Generate vector representations - Calculate semantic similarities - Manage embedding cache dependencies: - natural - tensorflow - crypto usage_example: | ```python memory_manager = MemoryManager() memory_manager.insert("AI ethics are crucial") results = memory_manager.retrieve("ethical AI") ---