ELVISIO commited on
Commit
394a6c2
·
verified ·
1 Parent(s): 555ea51

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:16000
8
+ - loss:OnlineContrastiveLoss
9
+ base_model: jinaai/jina-embeddings-v3
10
+ widget:
11
+ - source_sentence: This is absolutely the worst trash I have ever seen. When I saw
12
+ it in the theater (arghhh!), it took 15 full minutes before I realized that what
13
+ I was seeing was the feature, not a sick joke!
14
+ sentences:
15
+ - negative negative negative negative
16
+ - negative negative negative negative
17
+ - positive positive positive positive
18
+ - source_sentence: I saw this movie years ago in a group tradition of Fast Forward
19
+ Film Festivals, where we would set out to rent a bunch of B-movies and vote for
20
+ who picked the worst.<br /><br />The night we watched this, it was voted the best,
21
+ due to semblance of plot and fun costuming.<br /><br />This is certainly a silly,
22
+ kitschy, movie, to be watched under the full understanding that you are watching
23
+ low-budget fluff. Personally, however, I wouldn't recommend additional substances
24
+ ... this movie will leave it's own mark on you.<br /><br />It made enough of an
25
+ impression on me that I've actually been trying to get my hands on a copy for
26
+ a few years.<br /><br />A good choice if you are setting out to watch bad movies.
27
+ This one is fun, and I remember bouncy music ...
28
+ sentences:
29
+ - negative negative negative negative
30
+ - positive positive positive positive
31
+ - negative negative negative negative
32
+ - source_sentence: 'Star Wars: Episode 4 .<br /><br />the best Star Wars ever. its
33
+ the first movie i ever Sean were the bad guys win and its a very good ending.
34
+ it really had me wait hing for the next star wars because so match stuff comes
35
+ along in this movie that you just got to find out more in the last one. whit Al
36
+ lot of movies i always get the feeling that it could be don bedder but not whit
37
+ this one. and i Will never ever forget the part were wader tels Luke he is his
38
+ father.way too cool. also love the Bob feat figure a do hes a back ground player.
39
+ if you never ever Saw a star wars movie you go to she this one.its the best.<br
40
+ /><br />thanks Lucas'
41
+ sentences:
42
+ - negative negative negative negative
43
+ - positive positive positive positive
44
+ - positive positive positive positive
45
+ - source_sentence: Alain Chabat claims this movie as his original idea but the theme
46
+ of reluctant lovers who finally get it together is as old, if not older, than
47
+ Shakespeare.<br /><br />Chabat is a "vieux garcon", happily single and not wanting
48
+ any member of the opposite sex to disturb his life. He has a problem, 5 sisters
49
+ and a matriarchal mum - the G7 - who decide he should be married. Enter the delightful,
50
+ charming Charlotte Gainsbourg and what should be a simple plan. Charlotte has
51
+ to pose as Chabat's girlfriend and then simply not turn up on the day of the wedding.
52
+ No more talk of marriage from the G7. Of course the best laid plans have a habit
53
+ of spiralling out of control.<br /><br />There are very strong supporting roles
54
+ from Lafont as the mother and Osterman as the tight-fisted brother of Gainsbourg.<br
55
+ /><br />There are some fantastic scenes as first Charlotte has to charm, then
56
+ revolt the family. French farce with an English.
57
+ sentences:
58
+ - positive positive positive positive
59
+ - negative negative negative negative
60
+ - negative negative negative negative
61
+ - source_sentence: Saw this on cable back in the early 90's and loved it. Never saw
62
+ it again until it showed up on cable again recently. Still find it a great Vietnam
63
+ movie. Not sure why its not higher rated. I found everything about this film compelling.
64
+ As a vet (not from Vietnam) I can relate to the situations brought by both Harris
65
+ and De Niro. I can only imagine this film being more poignant now with our situation
66
+ in Iraq. I wish this would be offered on cable more often for people to see. The
67
+ human toll on our soldiers isn't left on the battlefield. Its brought home for
68
+ the rest of there lives. And this film is one of many that brings that home in
69
+ a very hard way. Excellent film.
70
+ sentences:
71
+ - negative negative negative negative
72
+ - positive positive positive positive
73
+ - positive positive positive positive
74
+ pipeline_tag: sentence-similarity
75
+ library_name: sentence-transformers
76
+ ---
77
+
78
+ # SentenceTransformer based on jinaai/jina-embeddings-v3
79
+
80
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
81
+
82
+ ## Model Details
83
+
84
+ ### Model Description
85
+ - **Model Type:** Sentence Transformer
86
+ - **Base model:** [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) <!-- at revision 62a81741b58448ed8f691764cec7aa5d3c045e4c -->
87
+ - **Maximum Sequence Length:** 8194 tokens
88
+ - **Output Dimensionality:** 1024 tokens
89
+ - **Similarity Function:** Cosine Similarity
90
+ <!-- - **Training Dataset:** Unknown -->
91
+ <!-- - **Language:** Unknown -->
92
+ <!-- - **License:** Unknown -->
93
+
94
+ ### Model Sources
95
+
96
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
97
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
98
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
99
+
100
+ ### Full Model Architecture
101
+
102
+ ```
103
+ SentenceTransformer(
104
+ (transformer): Transformer(
105
+ (auto_model): XLMRobertaLoRA(
106
+ (roberta): XLMRobertaModel(
107
+ (embeddings): XLMRobertaEmbeddings(
108
+ (word_embeddings): ParametrizedEmbedding(
109
+ 250002, 1024, padding_idx=1
110
+ (parametrizations): ModuleDict(
111
+ (weight): ParametrizationList(
112
+ (0): LoRAParametrization()
113
+ )
114
+ )
115
+ )
116
+ (token_type_embeddings): ParametrizedEmbedding(
117
+ 1, 1024
118
+ (parametrizations): ModuleDict(
119
+ (weight): ParametrizationList(
120
+ (0): LoRAParametrization()
121
+ )
122
+ )
123
+ )
124
+ )
125
+ (emb_drop): Dropout(p=0.1, inplace=False)
126
+ (emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
127
+ (encoder): XLMRobertaEncoder(
128
+ (layers): ModuleList(
129
+ (0-23): 24 x Block(
130
+ (mixer): MHA(
131
+ (rotary_emb): RotaryEmbedding()
132
+ (Wqkv): ParametrizedLinearResidual(
133
+ in_features=1024, out_features=3072, bias=True
134
+ (parametrizations): ModuleDict(
135
+ (weight): ParametrizationList(
136
+ (0): LoRAParametrization()
137
+ )
138
+ )
139
+ )
140
+ (inner_attn): FlashSelfAttention(
141
+ (drop): Dropout(p=0.1, inplace=False)
142
+ )
143
+ (inner_cross_attn): FlashCrossAttention(
144
+ (drop): Dropout(p=0.1, inplace=False)
145
+ )
146
+ (out_proj): ParametrizedLinear(
147
+ in_features=1024, out_features=1024, bias=True
148
+ (parametrizations): ModuleDict(
149
+ (weight): ParametrizationList(
150
+ (0): LoRAParametrization()
151
+ )
152
+ )
153
+ )
154
+ )
155
+ (dropout1): Dropout(p=0.1, inplace=False)
156
+ (drop_path1): StochasticDepth(p=0.0, mode=row)
157
+ (norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
158
+ (mlp): Mlp(
159
+ (fc1): ParametrizedLinear(
160
+ in_features=1024, out_features=4096, bias=True
161
+ (parametrizations): ModuleDict(
162
+ (weight): ParametrizationList(
163
+ (0): LoRAParametrization()
164
+ )
165
+ )
166
+ )
167
+ (fc2): ParametrizedLinear(
168
+ in_features=4096, out_features=1024, bias=True
169
+ (parametrizations): ModuleDict(
170
+ (weight): ParametrizationList(
171
+ (0): LoRAParametrization()
172
+ )
173
+ )
174
+ )
175
+ )
176
+ (dropout2): Dropout(p=0.1, inplace=False)
177
+ (drop_path2): StochasticDepth(p=0.0, mode=row)
178
+ (norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
179
+ )
180
+ )
181
+ )
182
+ (pooler): XLMRobertaPooler(
183
+ (dense): ParametrizedLinear(
184
+ in_features=1024, out_features=1024, bias=True
185
+ (parametrizations): ModuleDict(
186
+ (weight): ParametrizationList(
187
+ (0): LoRAParametrization()
188
+ )
189
+ )
190
+ )
191
+ (activation): Tanh()
192
+ )
193
+ )
194
+ )
195
+ )
196
+ (pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
197
+ (normalizer): Normalize()
198
+ )
199
+ ```
200
+
201
+ ## Usage
202
+
203
+ ### Direct Usage (Sentence Transformers)
204
+
205
+ First install the Sentence Transformers library:
206
+
207
+ ```bash
208
+ pip install -U sentence-transformers
209
+ ```
210
+
211
+ Then you can load this model and run inference.
212
+ ```python
213
+ from sentence_transformers import SentenceTransformer
214
+
215
+ # Download from the 🤗 Hub
216
+ model = SentenceTransformer("ELVISIO/jina_embeddings_v3_finetuned_online_contrastive_imdb")
217
+ # Run inference
218
+ sentences = [
219
+ "Saw this on cable back in the early 90's and loved it. Never saw it again until it showed up on cable again recently. Still find it a great Vietnam movie. Not sure why its not higher rated. I found everything about this film compelling. As a vet (not from Vietnam) I can relate to the situations brought by both Harris and De Niro. I can only imagine this film being more poignant now with our situation in Iraq. I wish this would be offered on cable more often for people to see. The human toll on our soldiers isn't left on the battlefield. Its brought home for the rest of there lives. And this film is one of many that brings that home in a very hard way. Excellent film.",
220
+ 'positive positive positive positive',
221
+ 'negative negative negative negative',
222
+ ]
223
+ embeddings = model.encode(sentences)
224
+ print(embeddings.shape)
225
+ # [3, 1024]
226
+
227
+ # Get the similarity scores for the embeddings
228
+ similarities = model.similarity(embeddings, embeddings)
229
+ print(similarities.shape)
230
+ # [3, 3]
231
+ ```
232
+
233
+ <!--
234
+ ### Direct Usage (Transformers)
235
+
236
+ <details><summary>Click to see the direct usage in Transformers</summary>
237
+
238
+ </details>
239
+ -->
240
+
241
+ <!--
242
+ ### Downstream Usage (Sentence Transformers)
243
+
244
+ You can finetune this model on your own dataset.
245
+
246
+ <details><summary>Click to expand</summary>
247
+
248
+ </details>
249
+ -->
250
+
251
+ <!--
252
+ ### Out-of-Scope Use
253
+
254
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
255
+ -->
256
+
257
+ <!--
258
+ ## Bias, Risks and Limitations
259
+
260
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
261
+ -->
262
+
263
+ <!--
264
+ ### Recommendations
265
+
266
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
267
+ -->
268
+
269
+ ## Training Details
270
+
271
+ ### Training Dataset
272
+
273
+ #### Unnamed Dataset
274
+
275
+
276
+ * Size: 16,000 training samples
277
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
278
+ * Approximate statistics based on the first 1000 samples:
279
+ | | sentence1 | sentence2 | label |
280
+ |:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------|
281
+ | type | string | string | float |
282
+ | details | <ul><li>min: 39 tokens</li><li>mean: 173.59 tokens</li><li>max: 291 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 6.0 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
283
+ * Samples:
284
+ | sentence1 | sentence2 | label |
285
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------|:-----------------|
286
+ | <code>There are two kinds of 1950s musicals. First you have the glossy MGM productions with big names and great music. And then you have the minor league with a less famous cast, less famous music and second rate directors. 'The Girl Can't Help It' belongs to the latter category. Neither Tom Ewell or Edmond O'Brien became famous and Jayne Mansfield was famous for her... well, never mind. Seems like every decade has its share of Bo Dereks or Pamela Andersons. The plot itself is thin as a razorblade and one can't help suspect that it is mostly an attempt to sell records for Fats Domino, Little Richard or others of the 1950s rock acts that appear in the movie. If that music appeals to you this is worth watching. If not, don't bother.</code> | <code>negative negative negative negative</code> | <code>1.0</code> |
287
+ | <code>There are two kinds of 1950s musicals. First you have the glossy MGM productions with big names and great music. And then you have the minor league with a less famous cast, less famous music and second rate directors. 'The Girl Can't Help It' belongs to the latter category. Neither Tom Ewell or Edmond O'Brien became famous and Jayne Mansfield was famous for her... well, never mind. Seems like every decade has its share of Bo Dereks or Pamela Andersons. The plot itself is thin as a razorblade and one can't help suspect that it is mostly an attempt to sell records for Fats Domino, Little Richard or others of the 1950s rock acts that appear in the movie. If that music appeals to you this is worth watching. If not, don't bother.</code> | <code>positive positive positive positive</code> | <code>0.0</code> |
288
+ | <code>Thankfully as a student I have been able to watch "Diagnosis Murder" for a number of years now. It is basically about a doctor who solves murders with the help of his LAPD son, a young doctor and a pathologist. DM provided 8 seasons of exceptional entertainment. What made it different from the many other cop shows and worth watching many times over was its cast and quality of writing. The main cast gave good performances and Dick Van Dyke's entertainer roots shone through with the use of magic, dance and humor. The best aspects of DM was the fast pace, witty scripts and of course the toe tapping score. Sadly it has been unfairly compared to "Murder, She Wrote". DM is far superior boasting more difficult mysteries to solve and more variety. Now it is gone TV is a worse place. Gone are the days of feelgood, family friendly cop shows. Now there is just depressing 'gritty' ones.</code> | <code>positive positive positive positive</code> | <code>1.0</code> |
289
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
290
+
291
+ ### Training Hyperparameters
292
+ #### Non-Default Hyperparameters
293
+
294
+ - `per_device_train_batch_size`: 64
295
+ - `per_device_eval_batch_size`: 64
296
+
297
+ #### All Hyperparameters
298
+ <details><summary>Click to expand</summary>
299
+
300
+ - `overwrite_output_dir`: False
301
+ - `do_predict`: False
302
+ - `eval_strategy`: no
303
+ - `prediction_loss_only`: True
304
+ - `per_device_train_batch_size`: 64
305
+ - `per_device_eval_batch_size`: 64
306
+ - `per_gpu_train_batch_size`: None
307
+ - `per_gpu_eval_batch_size`: None
308
+ - `gradient_accumulation_steps`: 1
309
+ - `eval_accumulation_steps`: None
310
+ - `torch_empty_cache_steps`: None
311
+ - `learning_rate`: 5e-05
312
+ - `weight_decay`: 0.0
313
+ - `adam_beta1`: 0.9
314
+ - `adam_beta2`: 0.999
315
+ - `adam_epsilon`: 1e-08
316
+ - `max_grad_norm`: 1.0
317
+ - `num_train_epochs`: 3.0
318
+ - `max_steps`: -1
319
+ - `lr_scheduler_type`: linear
320
+ - `lr_scheduler_kwargs`: {}
321
+ - `warmup_ratio`: 0.0
322
+ - `warmup_steps`: 0
323
+ - `log_level`: passive
324
+ - `log_level_replica`: warning
325
+ - `log_on_each_node`: True
326
+ - `logging_nan_inf_filter`: True
327
+ - `save_safetensors`: True
328
+ - `save_on_each_node`: False
329
+ - `save_only_model`: False
330
+ - `restore_callback_states_from_checkpoint`: False
331
+ - `no_cuda`: False
332
+ - `use_cpu`: False
333
+ - `use_mps_device`: False
334
+ - `seed`: 42
335
+ - `data_seed`: None
336
+ - `jit_mode_eval`: False
337
+ - `use_ipex`: False
338
+ - `bf16`: False
339
+ - `fp16`: False
340
+ - `fp16_opt_level`: O1
341
+ - `half_precision_backend`: auto
342
+ - `bf16_full_eval`: False
343
+ - `fp16_full_eval`: False
344
+ - `tf32`: None
345
+ - `local_rank`: 0
346
+ - `ddp_backend`: None
347
+ - `tpu_num_cores`: None
348
+ - `tpu_metrics_debug`: False
349
+ - `debug`: []
350
+ - `dataloader_drop_last`: False
351
+ - `dataloader_num_workers`: 0
352
+ - `dataloader_prefetch_factor`: None
353
+ - `past_index`: -1
354
+ - `disable_tqdm`: False
355
+ - `remove_unused_columns`: True
356
+ - `label_names`: None
357
+ - `load_best_model_at_end`: False
358
+ - `ignore_data_skip`: False
359
+ - `fsdp`: []
360
+ - `fsdp_min_num_params`: 0
361
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
362
+ - `fsdp_transformer_layer_cls_to_wrap`: None
363
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
364
+ - `deepspeed`: None
365
+ - `label_smoothing_factor`: 0.0
366
+ - `optim`: adamw_torch
367
+ - `optim_args`: None
368
+ - `adafactor`: False
369
+ - `group_by_length`: False
370
+ - `length_column_name`: length
371
+ - `ddp_find_unused_parameters`: None
372
+ - `ddp_bucket_cap_mb`: None
373
+ - `ddp_broadcast_buffers`: False
374
+ - `dataloader_pin_memory`: True
375
+ - `dataloader_persistent_workers`: False
376
+ - `skip_memory_metrics`: True
377
+ - `use_legacy_prediction_loop`: False
378
+ - `push_to_hub`: False
379
+ - `resume_from_checkpoint`: None
380
+ - `hub_model_id`: None
381
+ - `hub_strategy`: every_save
382
+ - `hub_private_repo`: False
383
+ - `hub_always_push`: False
384
+ - `gradient_checkpointing`: False
385
+ - `gradient_checkpointing_kwargs`: None
386
+ - `include_inputs_for_metrics`: False
387
+ - `eval_do_concat_batches`: True
388
+ - `fp16_backend`: auto
389
+ - `push_to_hub_model_id`: None
390
+ - `push_to_hub_organization`: None
391
+ - `mp_parameters`:
392
+ - `auto_find_batch_size`: False
393
+ - `full_determinism`: False
394
+ - `torchdynamo`: None
395
+ - `ray_scope`: last
396
+ - `ddp_timeout`: 1800
397
+ - `torch_compile`: False
398
+ - `torch_compile_backend`: None
399
+ - `torch_compile_mode`: None
400
+ - `dispatch_batches`: None
401
+ - `split_batches`: None
402
+ - `include_tokens_per_second`: False
403
+ - `include_num_input_tokens_seen`: False
404
+ - `neftune_noise_alpha`: None
405
+ - `optim_target_modules`: None
406
+ - `batch_eval_metrics`: False
407
+ - `eval_on_start`: False
408
+ - `use_liger_kernel`: False
409
+ - `eval_use_gather_object`: False
410
+ - `batch_sampler`: batch_sampler
411
+ - `multi_dataset_batch_sampler`: proportional
412
+
413
+ </details>
414
+
415
+ ### Training Logs
416
+ | Epoch | Step | Training Loss |
417
+ |:-----:|:----:|:-------------:|
418
+ | 2.0 | 500 | 0.9466 |
419
+
420
+
421
+ ### Framework Versions
422
+ - Python: 3.10.12
423
+ - Sentence Transformers: 3.1.1
424
+ - Transformers: 4.45.2
425
+ - PyTorch: 2.5.1+cu121
426
+ - Accelerate: 1.1.1
427
+ - Datasets: 2.21.0
428
+ - Tokenizers: 0.20.3
429
+
430
+ ## Citation
431
+
432
+ ### BibTeX
433
+
434
+ #### Sentence Transformers
435
+ ```bibtex
436
+ @inproceedings{reimers-2019-sentence-bert,
437
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
438
+ author = "Reimers, Nils and Gurevych, Iryna",
439
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
440
+ month = "11",
441
+ year = "2019",
442
+ publisher = "Association for Computational Linguistics",
443
+ url = "https://arxiv.org/abs/1908.10084",
444
+ }
445
+ ```
446
+
447
+ <!--
448
+ ## Glossary
449
+
450
+ *Clearly define terms in order to be accessible across audiences.*
451
+ -->
452
+
453
+ <!--
454
+ ## Model Card Authors
455
+
456
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
457
+ -->
458
+
459
+ <!--
460
+ ## Model Card Contact
461
+
462
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
463
+ -->
config.json ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "jinaai/jina-embeddings-v3",
3
+ "architectures": [
4
+ "XLMRobertaLoRA"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "auto_map": {
8
+ "AutoConfig": "jinaai/xlm-roberta-flash-implementation--configuration_xlm_roberta.XLMRobertaFlashConfig",
9
+ "AutoModel": "jinaai/xlm-roberta-flash-implementation--modeling_lora.XLMRobertaLoRA",
10
+ "AutoModelForMaskedLM": "jinaai/xlm-roberta-flash-implementation--modeling_xlm_roberta.XLMRobertaForMaskedLM",
11
+ "AutoModelForPreTraining": "jinaai/xlm-roberta-flash-implementation--modeling_xlm_roberta.XLMRobertaForPreTraining"
12
+ },
13
+ "bos_token_id": 0,
14
+ "classifier_dropout": null,
15
+ "emb_pooler": null,
16
+ "eos_token_id": 2,
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout_prob": 0.1,
19
+ "hidden_size": 1024,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 4096,
22
+ "layer_norm_eps": 1e-05,
23
+ "load_trained_adapters": true,
24
+ "lora_adaptations": [
25
+ "retrieval.query",
26
+ "retrieval.passage",
27
+ "separation",
28
+ "classification",
29
+ "text-matching"
30
+ ],
31
+ "lora_alpha": 1,
32
+ "lora_dropout_p": 0.0,
33
+ "lora_main_params_trainable": false,
34
+ "lora_rank": 4,
35
+ "matryoshka_dimensions": [
36
+ 32,
37
+ 64,
38
+ 128,
39
+ 256,
40
+ 512,
41
+ 768,
42
+ 1024
43
+ ],
44
+ "max_position_embeddings": 8194,
45
+ "model_type": "xlm-roberta",
46
+ "num_attention_heads": 16,
47
+ "num_hidden_layers": 24,
48
+ "output_past": true,
49
+ "pad_token_id": 1,
50
+ "position_embedding_type": "rotary",
51
+ "rotary_emb_base": 20000.0,
52
+ "task_instructions": {
53
+ "classification": "",
54
+ "retrieval.passage": "Represent the document for retrieval: ",
55
+ "retrieval.query": "Represent the query for retrieving evidence documents: ",
56
+ "separation": "",
57
+ "text-matching": ""
58
+ },
59
+ "torch_dtype": "bfloat16",
60
+ "transformers_version": "4.45.2",
61
+ "truncate_dim": null,
62
+ "type_vocab_size": 1,
63
+ "use_cache": true,
64
+ "use_flash_attn": true,
65
+ "use_reentrant": false,
66
+ "vocab_size": 250002
67
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "retrieval.query": "Represent the query for retrieving evidence documents: ",
9
+ "retrieval.passage": "Represent the document for retrieval: ",
10
+ "separation": "",
11
+ "classification": "",
12
+ "text-matching": ""
13
+ },
14
+ "default_prompt_name": null,
15
+ "similarity_fn_name": "cosine"
16
+ }
custom_st.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import logging
3
+ import os
4
+ from io import BytesIO
5
+ from typing import Any, Dict, List, Optional, Tuple, Union
6
+
7
+ import torch
8
+ from torch import nn
9
+ from transformers import AutoConfig, AutoModel, AutoTokenizer
10
+
11
+ logger = logging.getLogger(__name__)
12
+
13
+
14
+ class Transformer(nn.Module):
15
+ """Huggingface AutoModel to generate token embeddings.
16
+ Loads the correct class, e.g. BERT / RoBERTa etc.
17
+
18
+ Args:
19
+ model_name_or_path: Huggingface models name
20
+ (https://huggingface.co/models)
21
+ max_seq_length: Truncate any inputs longer than max_seq_length
22
+ model_args: Keyword arguments passed to the Huggingface
23
+ Transformers model
24
+ tokenizer_args: Keyword arguments passed to the Huggingface
25
+ Transformers tokenizer
26
+ config_args: Keyword arguments passed to the Huggingface
27
+ Transformers config
28
+ cache_dir: Cache dir for Huggingface Transformers to store/load
29
+ models
30
+ do_lower_case: If true, lowercases the input (independent if the
31
+ model is cased or not)
32
+ tokenizer_name_or_path: Name or path of the tokenizer. When
33
+ None, then model_name_or_path is used
34
+ """
35
+
36
+ save_in_root: bool = True
37
+
38
+ def __init__(
39
+ self,
40
+ model_name_or_path: str,
41
+ max_seq_length: int = None,
42
+ model_args: Dict[str, Any] = None,
43
+ tokenizer_args: Dict[str, Any] = None,
44
+ config_args: Dict[str, Any] = None,
45
+ cache_dir: str = None,
46
+ do_lower_case: bool = False,
47
+ tokenizer_name_or_path: str = None,
48
+ **kwargs,
49
+ ) -> None:
50
+ super().__init__()
51
+ self.config_keys = ["max_seq_length", "do_lower_case"]
52
+ self.do_lower_case = do_lower_case
53
+ if model_args is None:
54
+ model_args = {}
55
+ if tokenizer_args is None:
56
+ tokenizer_args = {}
57
+ if config_args is None:
58
+ config_args = {}
59
+
60
+ if kwargs.get("backend", "torch") != "torch":
61
+ logger.warning(
62
+ f'"jinaai/jina-embeddings-v3" is currently not compatible with the {kwargs["backend"]} backend. '
63
+ 'Continuing with the "torch" backend.'
64
+ )
65
+
66
+ self.config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)
67
+
68
+ self._lora_adaptations = self.config.lora_adaptations
69
+ if (
70
+ not isinstance(self._lora_adaptations, list)
71
+ or len(self._lora_adaptations) < 1
72
+ ):
73
+ raise ValueError(
74
+ f"`lora_adaptations` must be a list and contain at least one element"
75
+ )
76
+ self._adaptation_map = {
77
+ name: idx for idx, name in enumerate(self._lora_adaptations)
78
+ }
79
+
80
+ self.default_task = model_args.pop('default_task', None)
81
+
82
+ self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=self.config, cache_dir=cache_dir, **model_args)
83
+
84
+ if max_seq_length is not None and "model_max_length" not in tokenizer_args:
85
+ tokenizer_args["model_max_length"] = max_seq_length
86
+ self.tokenizer = AutoTokenizer.from_pretrained(
87
+ tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path,
88
+ cache_dir=cache_dir,
89
+ **tokenizer_args,
90
+ )
91
+
92
+ # No max_seq_length set. Try to infer from model
93
+ if max_seq_length is None:
94
+ if (
95
+ hasattr(self.auto_model, "config")
96
+ and hasattr(self.auto_model.config, "max_position_embeddings")
97
+ and hasattr(self.tokenizer, "model_max_length")
98
+ ):
99
+ max_seq_length = min(self.auto_model.config.max_position_embeddings, self.tokenizer.model_max_length)
100
+
101
+ self.max_seq_length = max_seq_length
102
+
103
+ if tokenizer_name_or_path is not None:
104
+ self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__
105
+
106
+
107
+ @property
108
+ def default_task(self):
109
+ return self._default_task
110
+
111
+ @default_task.setter
112
+ def default_task(self, task: Union[None, str]):
113
+ self._validate_task(task)
114
+ self._default_task = task
115
+
116
+
117
+ def _validate_task(self, task: str):
118
+ if task and task not in self._lora_adaptations:
119
+ raise ValueError(
120
+ f"Unsupported task '{task}'. "
121
+ f"Supported tasks are: {', '.join(self.config.lora_adaptations)}. "
122
+ f"Alternatively, don't pass the `task` argument to disable LoRA."
123
+ )
124
+
125
+ def forward(
126
+ self, features: Dict[str, torch.Tensor], task: Optional[str] = None
127
+ ) -> Dict[str, torch.Tensor]:
128
+ """Returns token_embeddings, cls_token"""
129
+ self._validate_task(task)
130
+ task = task or self.default_task
131
+ adapter_mask = None
132
+ if task:
133
+ task_id = self._adaptation_map[task]
134
+ num_examples = features['input_ids'].size(0)
135
+ adapter_mask = torch.full(
136
+ (num_examples,), task_id, dtype=torch.int32, device=features['input_ids'].device
137
+ )
138
+
139
+ lora_arguments = (
140
+ {"adapter_mask": adapter_mask} if adapter_mask is not None else {}
141
+ )
142
+ features.pop('prompt_length', None)
143
+ output_states = self.auto_model.forward(**features, **lora_arguments, return_dict=False)
144
+ output_tokens = output_states[0]
145
+ features.update({"token_embeddings": output_tokens, "attention_mask": features["attention_mask"]})
146
+ return features
147
+
148
+ def get_word_embedding_dimension(self) -> int:
149
+ return self.auto_model.config.hidden_size
150
+
151
+ def tokenize(
152
+ self,
153
+ texts: Union[List[str], List[dict], List[Tuple[str, str]]],
154
+ padding: Union[str, bool] = True
155
+ ) -> Dict[str, torch.Tensor]:
156
+ """Tokenizes a text and maps tokens to token-ids"""
157
+ output = {}
158
+ if isinstance(texts[0], str):
159
+ to_tokenize = [texts]
160
+ elif isinstance(texts[0], dict):
161
+ to_tokenize = []
162
+ output["text_keys"] = []
163
+ for lookup in texts:
164
+ text_key, text = next(iter(lookup.items()))
165
+ to_tokenize.append(text)
166
+ output["text_keys"].append(text_key)
167
+ to_tokenize = [to_tokenize]
168
+ else:
169
+ batch1, batch2 = [], []
170
+ for text_tuple in texts:
171
+ batch1.append(text_tuple[0])
172
+ batch2.append(text_tuple[1])
173
+ to_tokenize = [batch1, batch2]
174
+
175
+ # strip
176
+ to_tokenize = [[str(s).strip() for s in col] for col in to_tokenize]
177
+
178
+ # Lowercase
179
+ if self.do_lower_case:
180
+ to_tokenize = [[s.lower() for s in col] for col in to_tokenize]
181
+
182
+ output.update(
183
+ self.tokenizer(
184
+ *to_tokenize,
185
+ padding=padding,
186
+ truncation="longest_first",
187
+ return_tensors="pt",
188
+ max_length=self.max_seq_length,
189
+ )
190
+ )
191
+ return output
192
+
193
+ def get_config_dict(self) -> Dict[str, Any]:
194
+ return {key: self.__dict__[key] for key in self.config_keys}
195
+
196
+ def save(self, output_path: str, safe_serialization: bool = True) -> None:
197
+ self.auto_model.save_pretrained(output_path, safe_serialization=safe_serialization)
198
+ self.tokenizer.save_pretrained(output_path)
199
+
200
+ with open(os.path.join(output_path, "sentence_bert_config.json"), "w") as fOut:
201
+ json.dump(self.get_config_dict(), fOut, indent=2)
202
+
203
+
204
+ @classmethod
205
+ def load(cls, input_path: str) -> "Transformer":
206
+ # Old classes used other config names than 'sentence_bert_config.json'
207
+ for config_name in [
208
+ "sentence_bert_config.json",
209
+ "sentence_roberta_config.json",
210
+ "sentence_distilbert_config.json",
211
+ "sentence_camembert_config.json",
212
+ "sentence_albert_config.json",
213
+ "sentence_xlm-roberta_config.json",
214
+ "sentence_xlnet_config.json",
215
+ ]:
216
+ sbert_config_path = os.path.join(input_path, config_name)
217
+ if os.path.exists(sbert_config_path):
218
+ break
219
+
220
+ with open(sbert_config_path) as fIn:
221
+ config = json.load(fIn)
222
+ # Don't allow configs to set trust_remote_code
223
+ if "model_args" in config and "trust_remote_code" in config["model_args"]:
224
+ config["model_args"].pop("trust_remote_code")
225
+ if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]:
226
+ config["tokenizer_args"].pop("trust_remote_code")
227
+ if "config_args" in config and "trust_remote_code" in config["config_args"]:
228
+ config["config_args"].pop("trust_remote_code")
229
+ return cls(model_name_or_path=input_path, **config)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7b468d9b78995ae0e85410e421b2c00e24cb6028f15dbde2dd36c1e8c214ae9
3
+ size 1144685320
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "transformer",
5
+ "path": "",
6
+ "type": "custom_st.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "pooler",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "normalizer",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8194,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e19cd8c08f528b481e909f73dbd1fd62b1e8b1117579ba205e477801237f9e0
3
+ size 17082988
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8194,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }