--- library_name: transformers tags: - generated_from_trainer datasets: - NewEden/Helpsteer-3-Filtered - NewEden/GSM8K-R1-filtered - NewEden/Hydrus-R1-Thinking-Sharegpt - NewEden/Hydrus-SonnetOrca - NewEden/Hydrus-HelpSteer2 - NewEden/Claude-Instruct-5K - PocketDoc/Dans-MemoryCore-CoreCurriculum-Small - Nitral-AI/ARES-ShareGPT - NewEden/Hydrus-Instruct-SmolTalk - NewEden/Hydrus-Chat_error-Pure-Dove-sharegpt - NewEden/Claude-Instruct-2.7K - PocketDoc/Dans-Assistantmaxx-Tulu3-IF model-index: - name: 4b-inst results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: NewEden_4B-PT model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer #hub_model_id: NewEden/4B-Inst #hub_strategy: "all_checkpoints" #push_dataset_to_hub: #hf_use_auth_token: true plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: false cut_cross_entropy: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: NewEden/Helpsteer-3-Filtered type: dan-chat-advanced - path: NewEden/GSM8K-R1-filtered type: dan-chat-advanced - path: NewEden/Hydrus-R1-Thinking-Sharegpt type: dan-chat-advanced - path: NewEden/Hydrus-SonnetOrca type: dan-chat-advanced - path: NewEden/Hydrus-HelpSteer2 type: dan-chat-advanced - path: NewEden/Claude-Instruct-5K type: dan-chat-advanced - path: PocketDoc/Dans-MemoryCore-CoreCurriculum-Small type: dan-chat-advanced - path: Nitral-AI/ARES-ShareGPT type: dan-chat-advanced - path: NewEden/Hydrus-Instruct-SmolTalk type: dan-chat-advanced - path: NewEden/Hydrus-Chat_error-Pure-Dove-sharegpt type: dan-chat-advanced - path: NewEden/Claude-Instruct-2.7K type: dan-chat-advanced - path: PocketDoc/Dans-Assistantmaxx-Tulu3-IF type: dan-chat-advanced dataset_prepared_path: prepared_data val_set_size: 0.0 output_dir: ./4b-inst sequence_len: 16384 sample_packing: true pad_to_sequence_len: true wandb_project: 4B-mng wandb_entity: wandb_watch: wandb_name: attempt-1 wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 max_grad_norm: 0.2 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 40 saves_per_epoch: 2 debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json weight_decay: 0.02 fsdp: fsdp_config: special_tokens: pad_token: <|finetune_right_pad_id|> ```

# 4b-inst This model was trained from scratch on the NewEden/Helpsteer-3-Filtered, the NewEden/GSM8K-R1-filtered, the NewEden/Hydrus-R1-Thinking-Sharegpt, the NewEden/Hydrus-SonnetOrca, the NewEden/Hydrus-HelpSteer2, the NewEden/Claude-Instruct-5K, the PocketDoc/Dans-MemoryCore-CoreCurriculum-Small, the Nitral-AI/ARES-ShareGPT, the NewEden/Hydrus-Instruct-SmolTalk, the NewEden/Hydrus-Chat_error-Pure-Dove-sharegpt, the NewEden/Claude-Instruct-2.7K and the PocketDoc/Dans-Assistantmaxx-Tulu3-IF datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 40 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0