Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- config.json +28 -0
- generation_config.json +9 -0
- latest +1 -0
- model-00001-of-00010.safetensors +3 -0
- model-00002-of-00010.safetensors +3 -0
- model-00003-of-00010.safetensors +3 -0
- model-00004-of-00010.safetensors +3 -0
- model-00005-of-00010.safetensors +3 -0
- model-00006-of-00010.safetensors +3 -0
- model-00007-of-00010.safetensors +3 -0
- model-00008-of-00010.safetensors +3 -0
- model-00009-of-00010.safetensors +3 -0
- model-00010-of-00010.safetensors +3 -0
- model.safetensors.index.json +370 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +1032 -0
- tokenizer.json +3 -0
- tokenizer_config.json +0 -0
- trainer_state.json +286 -0
- training_args.bin +3 -0
- zero_to_fp32.py +760 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MistralForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"head_dim": 128,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 5120,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 32768,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 40,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"pad_token_id": 11,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_theta": 100000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.50.0",
|
25 |
+
"unsloth_fixed": true,
|
26 |
+
"use_cache": false,
|
27 |
+
"vocab_size": 131072
|
28 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"max_length": 32768,
|
7 |
+
"pad_token_id": 11,
|
8 |
+
"transformers_version": "4.50.0"
|
9 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step34
|
model-00001-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:027b5110574391f980877833e5bbadda376c53c1e5a2ba7e100c1ed631292084
|
3 |
+
size 4781571736
|
model-00002-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8819277502d1d1fa348b930a89d25ab8c87a253b5c147370c7d5506609e3c1e
|
3 |
+
size 4781592784
|
model-00003-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66c86bfa0b073de2258852a3f283e1bb7f5f9ee9e5e1775a73275cdd31bde645
|
3 |
+
size 4781592800
|
model-00004-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84540e0b9ec8ca2ac6ef57688d3aab48a783c5127ca17b80edd8f6d052209a96
|
3 |
+
size 4886471600
|
model-00005-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d47157b3e37f74d2b88e105f212d4f22af8b104567a35b1203eb4a9688217477
|
3 |
+
size 4781592824
|
model-00006-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a3f20bfcd13bdf3be4597b9290c30f831b9e604efafdb0f123b3d8c4c389bf4
|
3 |
+
size 4781592816
|
model-00007-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82c820e560e28be85495302b589ff9d00734787664c1480ac2386e27beec6e0d
|
3 |
+
size 4886471600
|
model-00008-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b22378911304a6803644f652294ac96344caec3c17671f4fe74a42f2cf01752
|
3 |
+
size 4781592824
|
model-00009-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd806082c1086251c1abfd1ac5fb93a2ae320bb0702f4765ec83871443cd6dc7
|
3 |
+
size 4781592816
|
model-00010-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac107dc6644fa34289d37041fc927ab89b403fac424855457eee9b4f5d1ac38a
|
3 |
+
size 3900777072
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 47144806400
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00010-of-00010.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00010.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00010.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00010.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00003-of-00010.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00004-of-00010.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00004-of-00010.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00004-of-00010.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00004-of-00010.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00004-of-00010.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00005-of-00010.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00005-of-00010.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00005-of-00010.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00005-of-00010.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00010.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00006-of-00010.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00006-of-00010.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00006-of-00010.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00006-of-00010.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00007-of-00010.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00007-of-00010.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00007-of-00010.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00007-of-00010.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00007-of-00010.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00008-of-00010.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00010.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00008-of-00010.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00008-of-00010.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
|
242 |
+
"model.layers.32.input_layernorm.weight": "model-00008-of-00010.safetensors",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
|
251 |
+
"model.layers.33.input_layernorm.weight": "model-00009-of-00010.safetensors",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
|
260 |
+
"model.layers.34.input_layernorm.weight": "model-00009-of-00010.safetensors",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
|
269 |
+
"model.layers.35.input_layernorm.weight": "model-00009-of-00010.safetensors",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
|
278 |
+
"model.layers.36.input_layernorm.weight": "model-00009-of-00010.safetensors",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
|
287 |
+
"model.layers.37.input_layernorm.weight": "model-00010-of-00010.safetensors",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
|
296 |
+
"model.layers.38.input_layernorm.weight": "model-00010-of-00010.safetensors",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00010-of-00010.safetensors",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00010-of-00010.safetensors",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00010-of-00010.safetensors",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00010-of-00010.safetensors",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00010-of-00010.safetensors",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00010-of-00010.safetensors",
|
305 |
+
"model.layers.39.input_layernorm.weight": "model-00010-of-00010.safetensors",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00010-of-00010.safetensors",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00010-of-00010.safetensors",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00010-of-00010.safetensors",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00010-of-00010.safetensors",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00010-of-00010.safetensors",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00010-of-00010.safetensors",
|
314 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00010.safetensors",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
|
323 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00010.safetensors",
|
324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
|
325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
|
326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
|
327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
|
328 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
|
329 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
|
330 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
|
331 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
|
332 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00010.safetensors",
|
333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
|
334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
|
335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
|
336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
|
337 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
|
338 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
|
339 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
|
340 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
|
341 |
+
"model.layers.7.input_layernorm.weight": "model-00003-of-00010.safetensors",
|
342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
|
343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
|
344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
|
345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
|
346 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
|
347 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
|
348 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
|
349 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
|
350 |
+
"model.layers.8.input_layernorm.weight": "model-00003-of-00010.safetensors",
|
351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
|
352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
|
353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
|
354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
|
355 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
|
356 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
|
357 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
|
358 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
|
359 |
+
"model.layers.9.input_layernorm.weight": "model-00003-of-00010.safetensors",
|
360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
|
361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
|
362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
|
363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
|
364 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
|
365 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
|
366 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
|
367 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
|
368 |
+
"model.norm.weight": "model-00010-of-00010.safetensors"
|
369 |
+
}
|
370 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:308f94f9a5c24e1bad5c393d56ae7af7782600f4e791d9c6ac35b22fff2105b6
|
3 |
+
size 15024
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b056f3c23cb32dc77a2ec9e7651e0b64e4440e21f0fdf969b86bfc56a1cbdf06
|
3 |
+
size 15024
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3f8a05714bc528f4885a2816181652f2303b3e8150f89b56aaee6bec56aa520
|
3 |
+
size 15024
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f755bd3c330281961e5c03af9d10ce8c1e1678619d384f6f1fd5fd7dce2ff50
|
3 |
+
size 15024
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:981e523d81b09063c794ff1cfb39814bd39add52f9dfb217893d5ca79d5c9021
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,1032 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<unk>",
|
4 |
+
"<s>",
|
5 |
+
"<|im_end|>",
|
6 |
+
"[INST]",
|
7 |
+
"<|im_start|>",
|
8 |
+
"[AVAILABLE_TOOLS]",
|
9 |
+
"[/AVAILABLE_TOOLS]",
|
10 |
+
"[TOOL_RESULTS]",
|
11 |
+
"[/TOOL_RESULTS]",
|
12 |
+
"[TOOL_CALLS]",
|
13 |
+
"[IMG]",
|
14 |
+
"<pad>",
|
15 |
+
"[IMG_BREAK]",
|
16 |
+
"[IMG_END]",
|
17 |
+
"[PREFIX]",
|
18 |
+
"[MIDDLE]",
|
19 |
+
"[SUFFIX]",
|
20 |
+
"[SYSTEM_PROMPT]",
|
21 |
+
"[/SYSTEM_PROMPT]",
|
22 |
+
"[TOOL_CONTENT]",
|
23 |
+
"<SPECIAL_20>",
|
24 |
+
"<SPECIAL_21>",
|
25 |
+
"<SPECIAL_22>",
|
26 |
+
"<SPECIAL_23>",
|
27 |
+
"<SPECIAL_24>",
|
28 |
+
"<SPECIAL_25>",
|
29 |
+
"<SPECIAL_26>",
|
30 |
+
"<SPECIAL_27>",
|
31 |
+
"<SPECIAL_28>",
|
32 |
+
"<SPECIAL_29>",
|
33 |
+
"<SPECIAL_30>",
|
34 |
+
"<SPECIAL_31>",
|
35 |
+
"<SPECIAL_32>",
|
36 |
+
"<SPECIAL_33>",
|
37 |
+
"<SPECIAL_34>",
|
38 |
+
"<SPECIAL_35>",
|
39 |
+
"<SPECIAL_36>",
|
40 |
+
"<SPECIAL_37>",
|
41 |
+
"<SPECIAL_38>",
|
42 |
+
"<SPECIAL_39>",
|
43 |
+
"<SPECIAL_40>",
|
44 |
+
"<SPECIAL_41>",
|
45 |
+
"<SPECIAL_42>",
|
46 |
+
"<SPECIAL_43>",
|
47 |
+
"<SPECIAL_44>",
|
48 |
+
"<SPECIAL_45>",
|
49 |
+
"<SPECIAL_46>",
|
50 |
+
"<SPECIAL_47>",
|
51 |
+
"<SPECIAL_48>",
|
52 |
+
"<SPECIAL_49>",
|
53 |
+
"<SPECIAL_50>",
|
54 |
+
"<SPECIAL_51>",
|
55 |
+
"<SPECIAL_52>",
|
56 |
+
"<SPECIAL_53>",
|
57 |
+
"<SPECIAL_54>",
|
58 |
+
"<SPECIAL_55>",
|
59 |
+
"<SPECIAL_56>",
|
60 |
+
"<SPECIAL_57>",
|
61 |
+
"<SPECIAL_58>",
|
62 |
+
"<SPECIAL_59>",
|
63 |
+
"<SPECIAL_60>",
|
64 |
+
"<SPECIAL_61>",
|
65 |
+
"<SPECIAL_62>",
|
66 |
+
"<SPECIAL_63>",
|
67 |
+
"<SPECIAL_64>",
|
68 |
+
"<SPECIAL_65>",
|
69 |
+
"<SPECIAL_66>",
|
70 |
+
"<SPECIAL_67>",
|
71 |
+
"<SPECIAL_68>",
|
72 |
+
"<SPECIAL_69>",
|
73 |
+
"<SPECIAL_70>",
|
74 |
+
"<SPECIAL_71>",
|
75 |
+
"<SPECIAL_72>",
|
76 |
+
"<SPECIAL_73>",
|
77 |
+
"<SPECIAL_74>",
|
78 |
+
"<SPECIAL_75>",
|
79 |
+
"<SPECIAL_76>",
|
80 |
+
"<SPECIAL_77>",
|
81 |
+
"<SPECIAL_78>",
|
82 |
+
"<SPECIAL_79>",
|
83 |
+
"<SPECIAL_80>",
|
84 |
+
"<SPECIAL_81>",
|
85 |
+
"<SPECIAL_82>",
|
86 |
+
"<SPECIAL_83>",
|
87 |
+
"<SPECIAL_84>",
|
88 |
+
"<SPECIAL_85>",
|
89 |
+
"<SPECIAL_86>",
|
90 |
+
"<SPECIAL_87>",
|
91 |
+
"<SPECIAL_88>",
|
92 |
+
"<SPECIAL_89>",
|
93 |
+
"<SPECIAL_90>",
|
94 |
+
"<SPECIAL_91>",
|
95 |
+
"<SPECIAL_92>",
|
96 |
+
"<SPECIAL_93>",
|
97 |
+
"<SPECIAL_94>",
|
98 |
+
"<SPECIAL_95>",
|
99 |
+
"<SPECIAL_96>",
|
100 |
+
"<SPECIAL_97>",
|
101 |
+
"<SPECIAL_98>",
|
102 |
+
"<SPECIAL_99>",
|
103 |
+
"<SPECIAL_100>",
|
104 |
+
"<SPECIAL_101>",
|
105 |
+
"<SPECIAL_102>",
|
106 |
+
"<SPECIAL_103>",
|
107 |
+
"<SPECIAL_104>",
|
108 |
+
"<SPECIAL_105>",
|
109 |
+
"<SPECIAL_106>",
|
110 |
+
"<SPECIAL_107>",
|
111 |
+
"<SPECIAL_108>",
|
112 |
+
"<SPECIAL_109>",
|
113 |
+
"<SPECIAL_110>",
|
114 |
+
"<SPECIAL_111>",
|
115 |
+
"<SPECIAL_112>",
|
116 |
+
"<SPECIAL_113>",
|
117 |
+
"<SPECIAL_114>",
|
118 |
+
"<SPECIAL_115>",
|
119 |
+
"<SPECIAL_116>",
|
120 |
+
"<SPECIAL_117>",
|
121 |
+
"<SPECIAL_118>",
|
122 |
+
"<SPECIAL_119>",
|
123 |
+
"<SPECIAL_120>",
|
124 |
+
"<SPECIAL_121>",
|
125 |
+
"<SPECIAL_122>",
|
126 |
+
"<SPECIAL_123>",
|
127 |
+
"<SPECIAL_124>",
|
128 |
+
"<SPECIAL_125>",
|
129 |
+
"<SPECIAL_126>",
|
130 |
+
"<SPECIAL_127>",
|
131 |
+
"<SPECIAL_128>",
|
132 |
+
"<SPECIAL_129>",
|
133 |
+
"<SPECIAL_130>",
|
134 |
+
"<SPECIAL_131>",
|
135 |
+
"<SPECIAL_132>",
|
136 |
+
"<SPECIAL_133>",
|
137 |
+
"<SPECIAL_134>",
|
138 |
+
"<SPECIAL_135>",
|
139 |
+
"<SPECIAL_136>",
|
140 |
+
"<SPECIAL_137>",
|
141 |
+
"<SPECIAL_138>",
|
142 |
+
"<SPECIAL_139>",
|
143 |
+
"<SPECIAL_140>",
|
144 |
+
"<SPECIAL_141>",
|
145 |
+
"<SPECIAL_142>",
|
146 |
+
"<SPECIAL_143>",
|
147 |
+
"<SPECIAL_144>",
|
148 |
+
"<SPECIAL_145>",
|
149 |
+
"<SPECIAL_146>",
|
150 |
+
"<SPECIAL_147>",
|
151 |
+
"<SPECIAL_148>",
|
152 |
+
"<SPECIAL_149>",
|
153 |
+
"<SPECIAL_150>",
|
154 |
+
"<SPECIAL_151>",
|
155 |
+
"<SPECIAL_152>",
|
156 |
+
"<SPECIAL_153>",
|
157 |
+
"<SPECIAL_154>",
|
158 |
+
"<SPECIAL_155>",
|
159 |
+
"<SPECIAL_156>",
|
160 |
+
"<SPECIAL_157>",
|
161 |
+
"<SPECIAL_158>",
|
162 |
+
"<SPECIAL_159>",
|
163 |
+
"<SPECIAL_160>",
|
164 |
+
"<SPECIAL_161>",
|
165 |
+
"<SPECIAL_162>",
|
166 |
+
"<SPECIAL_163>",
|
167 |
+
"<SPECIAL_164>",
|
168 |
+
"<SPECIAL_165>",
|
169 |
+
"<SPECIAL_166>",
|
170 |
+
"<SPECIAL_167>",
|
171 |
+
"<SPECIAL_168>",
|
172 |
+
"<SPECIAL_169>",
|
173 |
+
"<SPECIAL_170>",
|
174 |
+
"<SPECIAL_171>",
|
175 |
+
"<SPECIAL_172>",
|
176 |
+
"<SPECIAL_173>",
|
177 |
+
"<SPECIAL_174>",
|
178 |
+
"<SPECIAL_175>",
|
179 |
+
"<SPECIAL_176>",
|
180 |
+
"<SPECIAL_177>",
|
181 |
+
"<SPECIAL_178>",
|
182 |
+
"<SPECIAL_179>",
|
183 |
+
"<SPECIAL_180>",
|
184 |
+
"<SPECIAL_181>",
|
185 |
+
"<SPECIAL_182>",
|
186 |
+
"<SPECIAL_183>",
|
187 |
+
"<SPECIAL_184>",
|
188 |
+
"<SPECIAL_185>",
|
189 |
+
"<SPECIAL_186>",
|
190 |
+
"<SPECIAL_187>",
|
191 |
+
"<SPECIAL_188>",
|
192 |
+
"<SPECIAL_189>",
|
193 |
+
"<SPECIAL_190>",
|
194 |
+
"<SPECIAL_191>",
|
195 |
+
"<SPECIAL_192>",
|
196 |
+
"<SPECIAL_193>",
|
197 |
+
"<SPECIAL_194>",
|
198 |
+
"<SPECIAL_195>",
|
199 |
+
"<SPECIAL_196>",
|
200 |
+
"<SPECIAL_197>",
|
201 |
+
"<SPECIAL_198>",
|
202 |
+
"<SPECIAL_199>",
|
203 |
+
"<SPECIAL_200>",
|
204 |
+
"<SPECIAL_201>",
|
205 |
+
"<SPECIAL_202>",
|
206 |
+
"<SPECIAL_203>",
|
207 |
+
"<SPECIAL_204>",
|
208 |
+
"<SPECIAL_205>",
|
209 |
+
"<SPECIAL_206>",
|
210 |
+
"<SPECIAL_207>",
|
211 |
+
"<SPECIAL_208>",
|
212 |
+
"<SPECIAL_209>",
|
213 |
+
"<SPECIAL_210>",
|
214 |
+
"<SPECIAL_211>",
|
215 |
+
"<SPECIAL_212>",
|
216 |
+
"<SPECIAL_213>",
|
217 |
+
"<SPECIAL_214>",
|
218 |
+
"<SPECIAL_215>",
|
219 |
+
"<SPECIAL_216>",
|
220 |
+
"<SPECIAL_217>",
|
221 |
+
"<SPECIAL_218>",
|
222 |
+
"<SPECIAL_219>",
|
223 |
+
"<SPECIAL_220>",
|
224 |
+
"<SPECIAL_221>",
|
225 |
+
"<SPECIAL_222>",
|
226 |
+
"<SPECIAL_223>",
|
227 |
+
"<SPECIAL_224>",
|
228 |
+
"<SPECIAL_225>",
|
229 |
+
"<SPECIAL_226>",
|
230 |
+
"<SPECIAL_227>",
|
231 |
+
"<SPECIAL_228>",
|
232 |
+
"<SPECIAL_229>",
|
233 |
+
"<SPECIAL_230>",
|
234 |
+
"<SPECIAL_231>",
|
235 |
+
"<SPECIAL_232>",
|
236 |
+
"<SPECIAL_233>",
|
237 |
+
"<SPECIAL_234>",
|
238 |
+
"<SPECIAL_235>",
|
239 |
+
"<SPECIAL_236>",
|
240 |
+
"<SPECIAL_237>",
|
241 |
+
"<SPECIAL_238>",
|
242 |
+
"<SPECIAL_239>",
|
243 |
+
"<SPECIAL_240>",
|
244 |
+
"<SPECIAL_241>",
|
245 |
+
"<SPECIAL_242>",
|
246 |
+
"<SPECIAL_243>",
|
247 |
+
"<SPECIAL_244>",
|
248 |
+
"<SPECIAL_245>",
|
249 |
+
"<SPECIAL_246>",
|
250 |
+
"<SPECIAL_247>",
|
251 |
+
"<SPECIAL_248>",
|
252 |
+
"<SPECIAL_249>",
|
253 |
+
"<SPECIAL_250>",
|
254 |
+
"<SPECIAL_251>",
|
255 |
+
"<SPECIAL_252>",
|
256 |
+
"<SPECIAL_253>",
|
257 |
+
"<SPECIAL_254>",
|
258 |
+
"<SPECIAL_255>",
|
259 |
+
"<SPECIAL_256>",
|
260 |
+
"<SPECIAL_257>",
|
261 |
+
"<SPECIAL_258>",
|
262 |
+
"<SPECIAL_259>",
|
263 |
+
"<SPECIAL_260>",
|
264 |
+
"<SPECIAL_261>",
|
265 |
+
"<SPECIAL_262>",
|
266 |
+
"<SPECIAL_263>",
|
267 |
+
"<SPECIAL_264>",
|
268 |
+
"<SPECIAL_265>",
|
269 |
+
"<SPECIAL_266>",
|
270 |
+
"<SPECIAL_267>",
|
271 |
+
"<SPECIAL_268>",
|
272 |
+
"<SPECIAL_269>",
|
273 |
+
"<SPECIAL_270>",
|
274 |
+
"<SPECIAL_271>",
|
275 |
+
"<SPECIAL_272>",
|
276 |
+
"<SPECIAL_273>",
|
277 |
+
"<SPECIAL_274>",
|
278 |
+
"<SPECIAL_275>",
|
279 |
+
"<SPECIAL_276>",
|
280 |
+
"<SPECIAL_277>",
|
281 |
+
"<SPECIAL_278>",
|
282 |
+
"<SPECIAL_279>",
|
283 |
+
"<SPECIAL_280>",
|
284 |
+
"<SPECIAL_281>",
|
285 |
+
"<SPECIAL_282>",
|
286 |
+
"<SPECIAL_283>",
|
287 |
+
"<SPECIAL_284>",
|
288 |
+
"<SPECIAL_285>",
|
289 |
+
"<SPECIAL_286>",
|
290 |
+
"<SPECIAL_287>",
|
291 |
+
"<SPECIAL_288>",
|
292 |
+
"<SPECIAL_289>",
|
293 |
+
"<SPECIAL_290>",
|
294 |
+
"<SPECIAL_291>",
|
295 |
+
"<SPECIAL_292>",
|
296 |
+
"<SPECIAL_293>",
|
297 |
+
"<SPECIAL_294>",
|
298 |
+
"<SPECIAL_295>",
|
299 |
+
"<SPECIAL_296>",
|
300 |
+
"<SPECIAL_297>",
|
301 |
+
"<SPECIAL_298>",
|
302 |
+
"<SPECIAL_299>",
|
303 |
+
"<SPECIAL_300>",
|
304 |
+
"<SPECIAL_301>",
|
305 |
+
"<SPECIAL_302>",
|
306 |
+
"<SPECIAL_303>",
|
307 |
+
"<SPECIAL_304>",
|
308 |
+
"<SPECIAL_305>",
|
309 |
+
"<SPECIAL_306>",
|
310 |
+
"<SPECIAL_307>",
|
311 |
+
"<SPECIAL_308>",
|
312 |
+
"<SPECIAL_309>",
|
313 |
+
"<SPECIAL_310>",
|
314 |
+
"<SPECIAL_311>",
|
315 |
+
"<SPECIAL_312>",
|
316 |
+
"<SPECIAL_313>",
|
317 |
+
"<SPECIAL_314>",
|
318 |
+
"<SPECIAL_315>",
|
319 |
+
"<SPECIAL_316>",
|
320 |
+
"<SPECIAL_317>",
|
321 |
+
"<SPECIAL_318>",
|
322 |
+
"<SPECIAL_319>",
|
323 |
+
"<SPECIAL_320>",
|
324 |
+
"<SPECIAL_321>",
|
325 |
+
"<SPECIAL_322>",
|
326 |
+
"<SPECIAL_323>",
|
327 |
+
"<SPECIAL_324>",
|
328 |
+
"<SPECIAL_325>",
|
329 |
+
"<SPECIAL_326>",
|
330 |
+
"<SPECIAL_327>",
|
331 |
+
"<SPECIAL_328>",
|
332 |
+
"<SPECIAL_329>",
|
333 |
+
"<SPECIAL_330>",
|
334 |
+
"<SPECIAL_331>",
|
335 |
+
"<SPECIAL_332>",
|
336 |
+
"<SPECIAL_333>",
|
337 |
+
"<SPECIAL_334>",
|
338 |
+
"<SPECIAL_335>",
|
339 |
+
"<SPECIAL_336>",
|
340 |
+
"<SPECIAL_337>",
|
341 |
+
"<SPECIAL_338>",
|
342 |
+
"<SPECIAL_339>",
|
343 |
+
"<SPECIAL_340>",
|
344 |
+
"<SPECIAL_341>",
|
345 |
+
"<SPECIAL_342>",
|
346 |
+
"<SPECIAL_343>",
|
347 |
+
"<SPECIAL_344>",
|
348 |
+
"<SPECIAL_345>",
|
349 |
+
"<SPECIAL_346>",
|
350 |
+
"<SPECIAL_347>",
|
351 |
+
"<SPECIAL_348>",
|
352 |
+
"<SPECIAL_349>",
|
353 |
+
"<SPECIAL_350>",
|
354 |
+
"<SPECIAL_351>",
|
355 |
+
"<SPECIAL_352>",
|
356 |
+
"<SPECIAL_353>",
|
357 |
+
"<SPECIAL_354>",
|
358 |
+
"<SPECIAL_355>",
|
359 |
+
"<SPECIAL_356>",
|
360 |
+
"<SPECIAL_357>",
|
361 |
+
"<SPECIAL_358>",
|
362 |
+
"<SPECIAL_359>",
|
363 |
+
"<SPECIAL_360>",
|
364 |
+
"<SPECIAL_361>",
|
365 |
+
"<SPECIAL_362>",
|
366 |
+
"<SPECIAL_363>",
|
367 |
+
"<SPECIAL_364>",
|
368 |
+
"<SPECIAL_365>",
|
369 |
+
"<SPECIAL_366>",
|
370 |
+
"<SPECIAL_367>",
|
371 |
+
"<SPECIAL_368>",
|
372 |
+
"<SPECIAL_369>",
|
373 |
+
"<SPECIAL_370>",
|
374 |
+
"<SPECIAL_371>",
|
375 |
+
"<SPECIAL_372>",
|
376 |
+
"<SPECIAL_373>",
|
377 |
+
"<SPECIAL_374>",
|
378 |
+
"<SPECIAL_375>",
|
379 |
+
"<SPECIAL_376>",
|
380 |
+
"<SPECIAL_377>",
|
381 |
+
"<SPECIAL_378>",
|
382 |
+
"<SPECIAL_379>",
|
383 |
+
"<SPECIAL_380>",
|
384 |
+
"<SPECIAL_381>",
|
385 |
+
"<SPECIAL_382>",
|
386 |
+
"<SPECIAL_383>",
|
387 |
+
"<SPECIAL_384>",
|
388 |
+
"<SPECIAL_385>",
|
389 |
+
"<SPECIAL_386>",
|
390 |
+
"<SPECIAL_387>",
|
391 |
+
"<SPECIAL_388>",
|
392 |
+
"<SPECIAL_389>",
|
393 |
+
"<SPECIAL_390>",
|
394 |
+
"<SPECIAL_391>",
|
395 |
+
"<SPECIAL_392>",
|
396 |
+
"<SPECIAL_393>",
|
397 |
+
"<SPECIAL_394>",
|
398 |
+
"<SPECIAL_395>",
|
399 |
+
"<SPECIAL_396>",
|
400 |
+
"<SPECIAL_397>",
|
401 |
+
"<SPECIAL_398>",
|
402 |
+
"<SPECIAL_399>",
|
403 |
+
"<SPECIAL_400>",
|
404 |
+
"<SPECIAL_401>",
|
405 |
+
"<SPECIAL_402>",
|
406 |
+
"<SPECIAL_403>",
|
407 |
+
"<SPECIAL_404>",
|
408 |
+
"<SPECIAL_405>",
|
409 |
+
"<SPECIAL_406>",
|
410 |
+
"<SPECIAL_407>",
|
411 |
+
"<SPECIAL_408>",
|
412 |
+
"<SPECIAL_409>",
|
413 |
+
"<SPECIAL_410>",
|
414 |
+
"<SPECIAL_411>",
|
415 |
+
"<SPECIAL_412>",
|
416 |
+
"<SPECIAL_413>",
|
417 |
+
"<SPECIAL_414>",
|
418 |
+
"<SPECIAL_415>",
|
419 |
+
"<SPECIAL_416>",
|
420 |
+
"<SPECIAL_417>",
|
421 |
+
"<SPECIAL_418>",
|
422 |
+
"<SPECIAL_419>",
|
423 |
+
"<SPECIAL_420>",
|
424 |
+
"<SPECIAL_421>",
|
425 |
+
"<SPECIAL_422>",
|
426 |
+
"<SPECIAL_423>",
|
427 |
+
"<SPECIAL_424>",
|
428 |
+
"<SPECIAL_425>",
|
429 |
+
"<SPECIAL_426>",
|
430 |
+
"<SPECIAL_427>",
|
431 |
+
"<SPECIAL_428>",
|
432 |
+
"<SPECIAL_429>",
|
433 |
+
"<SPECIAL_430>",
|
434 |
+
"<SPECIAL_431>",
|
435 |
+
"<SPECIAL_432>",
|
436 |
+
"<SPECIAL_433>",
|
437 |
+
"<SPECIAL_434>",
|
438 |
+
"<SPECIAL_435>",
|
439 |
+
"<SPECIAL_436>",
|
440 |
+
"<SPECIAL_437>",
|
441 |
+
"<SPECIAL_438>",
|
442 |
+
"<SPECIAL_439>",
|
443 |
+
"<SPECIAL_440>",
|
444 |
+
"<SPECIAL_441>",
|
445 |
+
"<SPECIAL_442>",
|
446 |
+
"<SPECIAL_443>",
|
447 |
+
"<SPECIAL_444>",
|
448 |
+
"<SPECIAL_445>",
|
449 |
+
"<SPECIAL_446>",
|
450 |
+
"<SPECIAL_447>",
|
451 |
+
"<SPECIAL_448>",
|
452 |
+
"<SPECIAL_449>",
|
453 |
+
"<SPECIAL_450>",
|
454 |
+
"<SPECIAL_451>",
|
455 |
+
"<SPECIAL_452>",
|
456 |
+
"<SPECIAL_453>",
|
457 |
+
"<SPECIAL_454>",
|
458 |
+
"<SPECIAL_455>",
|
459 |
+
"<SPECIAL_456>",
|
460 |
+
"<SPECIAL_457>",
|
461 |
+
"<SPECIAL_458>",
|
462 |
+
"<SPECIAL_459>",
|
463 |
+
"<SPECIAL_460>",
|
464 |
+
"<SPECIAL_461>",
|
465 |
+
"<SPECIAL_462>",
|
466 |
+
"<SPECIAL_463>",
|
467 |
+
"<SPECIAL_464>",
|
468 |
+
"<SPECIAL_465>",
|
469 |
+
"<SPECIAL_466>",
|
470 |
+
"<SPECIAL_467>",
|
471 |
+
"<SPECIAL_468>",
|
472 |
+
"<SPECIAL_469>",
|
473 |
+
"<SPECIAL_470>",
|
474 |
+
"<SPECIAL_471>",
|
475 |
+
"<SPECIAL_472>",
|
476 |
+
"<SPECIAL_473>",
|
477 |
+
"<SPECIAL_474>",
|
478 |
+
"<SPECIAL_475>",
|
479 |
+
"<SPECIAL_476>",
|
480 |
+
"<SPECIAL_477>",
|
481 |
+
"<SPECIAL_478>",
|
482 |
+
"<SPECIAL_479>",
|
483 |
+
"<SPECIAL_480>",
|
484 |
+
"<SPECIAL_481>",
|
485 |
+
"<SPECIAL_482>",
|
486 |
+
"<SPECIAL_483>",
|
487 |
+
"<SPECIAL_484>",
|
488 |
+
"<SPECIAL_485>",
|
489 |
+
"<SPECIAL_486>",
|
490 |
+
"<SPECIAL_487>",
|
491 |
+
"<SPECIAL_488>",
|
492 |
+
"<SPECIAL_489>",
|
493 |
+
"<SPECIAL_490>",
|
494 |
+
"<SPECIAL_491>",
|
495 |
+
"<SPECIAL_492>",
|
496 |
+
"<SPECIAL_493>",
|
497 |
+
"<SPECIAL_494>",
|
498 |
+
"<SPECIAL_495>",
|
499 |
+
"<SPECIAL_496>",
|
500 |
+
"<SPECIAL_497>",
|
501 |
+
"<SPECIAL_498>",
|
502 |
+
"<SPECIAL_499>",
|
503 |
+
"<SPECIAL_500>",
|
504 |
+
"<SPECIAL_501>",
|
505 |
+
"<SPECIAL_502>",
|
506 |
+
"<SPECIAL_503>",
|
507 |
+
"<SPECIAL_504>",
|
508 |
+
"<SPECIAL_505>",
|
509 |
+
"<SPECIAL_506>",
|
510 |
+
"<SPECIAL_507>",
|
511 |
+
"<SPECIAL_508>",
|
512 |
+
"<SPECIAL_509>",
|
513 |
+
"<SPECIAL_510>",
|
514 |
+
"<SPECIAL_511>",
|
515 |
+
"<SPECIAL_512>",
|
516 |
+
"<SPECIAL_513>",
|
517 |
+
"<SPECIAL_514>",
|
518 |
+
"<SPECIAL_515>",
|
519 |
+
"<SPECIAL_516>",
|
520 |
+
"<SPECIAL_517>",
|
521 |
+
"<SPECIAL_518>",
|
522 |
+
"<SPECIAL_519>",
|
523 |
+
"<SPECIAL_520>",
|
524 |
+
"<SPECIAL_521>",
|
525 |
+
"<SPECIAL_522>",
|
526 |
+
"<SPECIAL_523>",
|
527 |
+
"<SPECIAL_524>",
|
528 |
+
"<SPECIAL_525>",
|
529 |
+
"<SPECIAL_526>",
|
530 |
+
"<SPECIAL_527>",
|
531 |
+
"<SPECIAL_528>",
|
532 |
+
"<SPECIAL_529>",
|
533 |
+
"<SPECIAL_530>",
|
534 |
+
"<SPECIAL_531>",
|
535 |
+
"<SPECIAL_532>",
|
536 |
+
"<SPECIAL_533>",
|
537 |
+
"<SPECIAL_534>",
|
538 |
+
"<SPECIAL_535>",
|
539 |
+
"<SPECIAL_536>",
|
540 |
+
"<SPECIAL_537>",
|
541 |
+
"<SPECIAL_538>",
|
542 |
+
"<SPECIAL_539>",
|
543 |
+
"<SPECIAL_540>",
|
544 |
+
"<SPECIAL_541>",
|
545 |
+
"<SPECIAL_542>",
|
546 |
+
"<SPECIAL_543>",
|
547 |
+
"<SPECIAL_544>",
|
548 |
+
"<SPECIAL_545>",
|
549 |
+
"<SPECIAL_546>",
|
550 |
+
"<SPECIAL_547>",
|
551 |
+
"<SPECIAL_548>",
|
552 |
+
"<SPECIAL_549>",
|
553 |
+
"<SPECIAL_550>",
|
554 |
+
"<SPECIAL_551>",
|
555 |
+
"<SPECIAL_552>",
|
556 |
+
"<SPECIAL_553>",
|
557 |
+
"<SPECIAL_554>",
|
558 |
+
"<SPECIAL_555>",
|
559 |
+
"<SPECIAL_556>",
|
560 |
+
"<SPECIAL_557>",
|
561 |
+
"<SPECIAL_558>",
|
562 |
+
"<SPECIAL_559>",
|
563 |
+
"<SPECIAL_560>",
|
564 |
+
"<SPECIAL_561>",
|
565 |
+
"<SPECIAL_562>",
|
566 |
+
"<SPECIAL_563>",
|
567 |
+
"<SPECIAL_564>",
|
568 |
+
"<SPECIAL_565>",
|
569 |
+
"<SPECIAL_566>",
|
570 |
+
"<SPECIAL_567>",
|
571 |
+
"<SPECIAL_568>",
|
572 |
+
"<SPECIAL_569>",
|
573 |
+
"<SPECIAL_570>",
|
574 |
+
"<SPECIAL_571>",
|
575 |
+
"<SPECIAL_572>",
|
576 |
+
"<SPECIAL_573>",
|
577 |
+
"<SPECIAL_574>",
|
578 |
+
"<SPECIAL_575>",
|
579 |
+
"<SPECIAL_576>",
|
580 |
+
"<SPECIAL_577>",
|
581 |
+
"<SPECIAL_578>",
|
582 |
+
"<SPECIAL_579>",
|
583 |
+
"<SPECIAL_580>",
|
584 |
+
"<SPECIAL_581>",
|
585 |
+
"<SPECIAL_582>",
|
586 |
+
"<SPECIAL_583>",
|
587 |
+
"<SPECIAL_584>",
|
588 |
+
"<SPECIAL_585>",
|
589 |
+
"<SPECIAL_586>",
|
590 |
+
"<SPECIAL_587>",
|
591 |
+
"<SPECIAL_588>",
|
592 |
+
"<SPECIAL_589>",
|
593 |
+
"<SPECIAL_590>",
|
594 |
+
"<SPECIAL_591>",
|
595 |
+
"<SPECIAL_592>",
|
596 |
+
"<SPECIAL_593>",
|
597 |
+
"<SPECIAL_594>",
|
598 |
+
"<SPECIAL_595>",
|
599 |
+
"<SPECIAL_596>",
|
600 |
+
"<SPECIAL_597>",
|
601 |
+
"<SPECIAL_598>",
|
602 |
+
"<SPECIAL_599>",
|
603 |
+
"<SPECIAL_600>",
|
604 |
+
"<SPECIAL_601>",
|
605 |
+
"<SPECIAL_602>",
|
606 |
+
"<SPECIAL_603>",
|
607 |
+
"<SPECIAL_604>",
|
608 |
+
"<SPECIAL_605>",
|
609 |
+
"<SPECIAL_606>",
|
610 |
+
"<SPECIAL_607>",
|
611 |
+
"<SPECIAL_608>",
|
612 |
+
"<SPECIAL_609>",
|
613 |
+
"<SPECIAL_610>",
|
614 |
+
"<SPECIAL_611>",
|
615 |
+
"<SPECIAL_612>",
|
616 |
+
"<SPECIAL_613>",
|
617 |
+
"<SPECIAL_614>",
|
618 |
+
"<SPECIAL_615>",
|
619 |
+
"<SPECIAL_616>",
|
620 |
+
"<SPECIAL_617>",
|
621 |
+
"<SPECIAL_618>",
|
622 |
+
"<SPECIAL_619>",
|
623 |
+
"<SPECIAL_620>",
|
624 |
+
"<SPECIAL_621>",
|
625 |
+
"<SPECIAL_622>",
|
626 |
+
"<SPECIAL_623>",
|
627 |
+
"<SPECIAL_624>",
|
628 |
+
"<SPECIAL_625>",
|
629 |
+
"<SPECIAL_626>",
|
630 |
+
"<SPECIAL_627>",
|
631 |
+
"<SPECIAL_628>",
|
632 |
+
"<SPECIAL_629>",
|
633 |
+
"<SPECIAL_630>",
|
634 |
+
"<SPECIAL_631>",
|
635 |
+
"<SPECIAL_632>",
|
636 |
+
"<SPECIAL_633>",
|
637 |
+
"<SPECIAL_634>",
|
638 |
+
"<SPECIAL_635>",
|
639 |
+
"<SPECIAL_636>",
|
640 |
+
"<SPECIAL_637>",
|
641 |
+
"<SPECIAL_638>",
|
642 |
+
"<SPECIAL_639>",
|
643 |
+
"<SPECIAL_640>",
|
644 |
+
"<SPECIAL_641>",
|
645 |
+
"<SPECIAL_642>",
|
646 |
+
"<SPECIAL_643>",
|
647 |
+
"<SPECIAL_644>",
|
648 |
+
"<SPECIAL_645>",
|
649 |
+
"<SPECIAL_646>",
|
650 |
+
"<SPECIAL_647>",
|
651 |
+
"<SPECIAL_648>",
|
652 |
+
"<SPECIAL_649>",
|
653 |
+
"<SPECIAL_650>",
|
654 |
+
"<SPECIAL_651>",
|
655 |
+
"<SPECIAL_652>",
|
656 |
+
"<SPECIAL_653>",
|
657 |
+
"<SPECIAL_654>",
|
658 |
+
"<SPECIAL_655>",
|
659 |
+
"<SPECIAL_656>",
|
660 |
+
"<SPECIAL_657>",
|
661 |
+
"<SPECIAL_658>",
|
662 |
+
"<SPECIAL_659>",
|
663 |
+
"<SPECIAL_660>",
|
664 |
+
"<SPECIAL_661>",
|
665 |
+
"<SPECIAL_662>",
|
666 |
+
"<SPECIAL_663>",
|
667 |
+
"<SPECIAL_664>",
|
668 |
+
"<SPECIAL_665>",
|
669 |
+
"<SPECIAL_666>",
|
670 |
+
"<SPECIAL_667>",
|
671 |
+
"<SPECIAL_668>",
|
672 |
+
"<SPECIAL_669>",
|
673 |
+
"<SPECIAL_670>",
|
674 |
+
"<SPECIAL_671>",
|
675 |
+
"<SPECIAL_672>",
|
676 |
+
"<SPECIAL_673>",
|
677 |
+
"<SPECIAL_674>",
|
678 |
+
"<SPECIAL_675>",
|
679 |
+
"<SPECIAL_676>",
|
680 |
+
"<SPECIAL_677>",
|
681 |
+
"<SPECIAL_678>",
|
682 |
+
"<SPECIAL_679>",
|
683 |
+
"<SPECIAL_680>",
|
684 |
+
"<SPECIAL_681>",
|
685 |
+
"<SPECIAL_682>",
|
686 |
+
"<SPECIAL_683>",
|
687 |
+
"<SPECIAL_684>",
|
688 |
+
"<SPECIAL_685>",
|
689 |
+
"<SPECIAL_686>",
|
690 |
+
"<SPECIAL_687>",
|
691 |
+
"<SPECIAL_688>",
|
692 |
+
"<SPECIAL_689>",
|
693 |
+
"<SPECIAL_690>",
|
694 |
+
"<SPECIAL_691>",
|
695 |
+
"<SPECIAL_692>",
|
696 |
+
"<SPECIAL_693>",
|
697 |
+
"<SPECIAL_694>",
|
698 |
+
"<SPECIAL_695>",
|
699 |
+
"<SPECIAL_696>",
|
700 |
+
"<SPECIAL_697>",
|
701 |
+
"<SPECIAL_698>",
|
702 |
+
"<SPECIAL_699>",
|
703 |
+
"<SPECIAL_700>",
|
704 |
+
"<SPECIAL_701>",
|
705 |
+
"<SPECIAL_702>",
|
706 |
+
"<SPECIAL_703>",
|
707 |
+
"<SPECIAL_704>",
|
708 |
+
"<SPECIAL_705>",
|
709 |
+
"<SPECIAL_706>",
|
710 |
+
"<SPECIAL_707>",
|
711 |
+
"<SPECIAL_708>",
|
712 |
+
"<SPECIAL_709>",
|
713 |
+
"<SPECIAL_710>",
|
714 |
+
"<SPECIAL_711>",
|
715 |
+
"<SPECIAL_712>",
|
716 |
+
"<SPECIAL_713>",
|
717 |
+
"<SPECIAL_714>",
|
718 |
+
"<SPECIAL_715>",
|
719 |
+
"<SPECIAL_716>",
|
720 |
+
"<SPECIAL_717>",
|
721 |
+
"<SPECIAL_718>",
|
722 |
+
"<SPECIAL_719>",
|
723 |
+
"<SPECIAL_720>",
|
724 |
+
"<SPECIAL_721>",
|
725 |
+
"<SPECIAL_722>",
|
726 |
+
"<SPECIAL_723>",
|
727 |
+
"<SPECIAL_724>",
|
728 |
+
"<SPECIAL_725>",
|
729 |
+
"<SPECIAL_726>",
|
730 |
+
"<SPECIAL_727>",
|
731 |
+
"<SPECIAL_728>",
|
732 |
+
"<SPECIAL_729>",
|
733 |
+
"<SPECIAL_730>",
|
734 |
+
"<SPECIAL_731>",
|
735 |
+
"<SPECIAL_732>",
|
736 |
+
"<SPECIAL_733>",
|
737 |
+
"<SPECIAL_734>",
|
738 |
+
"<SPECIAL_735>",
|
739 |
+
"<SPECIAL_736>",
|
740 |
+
"<SPECIAL_737>",
|
741 |
+
"<SPECIAL_738>",
|
742 |
+
"<SPECIAL_739>",
|
743 |
+
"<SPECIAL_740>",
|
744 |
+
"<SPECIAL_741>",
|
745 |
+
"<SPECIAL_742>",
|
746 |
+
"<SPECIAL_743>",
|
747 |
+
"<SPECIAL_744>",
|
748 |
+
"<SPECIAL_745>",
|
749 |
+
"<SPECIAL_746>",
|
750 |
+
"<SPECIAL_747>",
|
751 |
+
"<SPECIAL_748>",
|
752 |
+
"<SPECIAL_749>",
|
753 |
+
"<SPECIAL_750>",
|
754 |
+
"<SPECIAL_751>",
|
755 |
+
"<SPECIAL_752>",
|
756 |
+
"<SPECIAL_753>",
|
757 |
+
"<SPECIAL_754>",
|
758 |
+
"<SPECIAL_755>",
|
759 |
+
"<SPECIAL_756>",
|
760 |
+
"<SPECIAL_757>",
|
761 |
+
"<SPECIAL_758>",
|
762 |
+
"<SPECIAL_759>",
|
763 |
+
"<SPECIAL_760>",
|
764 |
+
"<SPECIAL_761>",
|
765 |
+
"<SPECIAL_762>",
|
766 |
+
"<SPECIAL_763>",
|
767 |
+
"<SPECIAL_764>",
|
768 |
+
"<SPECIAL_765>",
|
769 |
+
"<SPECIAL_766>",
|
770 |
+
"<SPECIAL_767>",
|
771 |
+
"<SPECIAL_768>",
|
772 |
+
"<SPECIAL_769>",
|
773 |
+
"<SPECIAL_770>",
|
774 |
+
"<SPECIAL_771>",
|
775 |
+
"<SPECIAL_772>",
|
776 |
+
"<SPECIAL_773>",
|
777 |
+
"<SPECIAL_774>",
|
778 |
+
"<SPECIAL_775>",
|
779 |
+
"<SPECIAL_776>",
|
780 |
+
"<SPECIAL_777>",
|
781 |
+
"<SPECIAL_778>",
|
782 |
+
"<SPECIAL_779>",
|
783 |
+
"<SPECIAL_780>",
|
784 |
+
"<SPECIAL_781>",
|
785 |
+
"<SPECIAL_782>",
|
786 |
+
"<SPECIAL_783>",
|
787 |
+
"<SPECIAL_784>",
|
788 |
+
"<SPECIAL_785>",
|
789 |
+
"<SPECIAL_786>",
|
790 |
+
"<SPECIAL_787>",
|
791 |
+
"<SPECIAL_788>",
|
792 |
+
"<SPECIAL_789>",
|
793 |
+
"<SPECIAL_790>",
|
794 |
+
"<SPECIAL_791>",
|
795 |
+
"<SPECIAL_792>",
|
796 |
+
"<SPECIAL_793>",
|
797 |
+
"<SPECIAL_794>",
|
798 |
+
"<SPECIAL_795>",
|
799 |
+
"<SPECIAL_796>",
|
800 |
+
"<SPECIAL_797>",
|
801 |
+
"<SPECIAL_798>",
|
802 |
+
"<SPECIAL_799>",
|
803 |
+
"<SPECIAL_800>",
|
804 |
+
"<SPECIAL_801>",
|
805 |
+
"<SPECIAL_802>",
|
806 |
+
"<SPECIAL_803>",
|
807 |
+
"<SPECIAL_804>",
|
808 |
+
"<SPECIAL_805>",
|
809 |
+
"<SPECIAL_806>",
|
810 |
+
"<SPECIAL_807>",
|
811 |
+
"<SPECIAL_808>",
|
812 |
+
"<SPECIAL_809>",
|
813 |
+
"<SPECIAL_810>",
|
814 |
+
"<SPECIAL_811>",
|
815 |
+
"<SPECIAL_812>",
|
816 |
+
"<SPECIAL_813>",
|
817 |
+
"<SPECIAL_814>",
|
818 |
+
"<SPECIAL_815>",
|
819 |
+
"<SPECIAL_816>",
|
820 |
+
"<SPECIAL_817>",
|
821 |
+
"<SPECIAL_818>",
|
822 |
+
"<SPECIAL_819>",
|
823 |
+
"<SPECIAL_820>",
|
824 |
+
"<SPECIAL_821>",
|
825 |
+
"<SPECIAL_822>",
|
826 |
+
"<SPECIAL_823>",
|
827 |
+
"<SPECIAL_824>",
|
828 |
+
"<SPECIAL_825>",
|
829 |
+
"<SPECIAL_826>",
|
830 |
+
"<SPECIAL_827>",
|
831 |
+
"<SPECIAL_828>",
|
832 |
+
"<SPECIAL_829>",
|
833 |
+
"<SPECIAL_830>",
|
834 |
+
"<SPECIAL_831>",
|
835 |
+
"<SPECIAL_832>",
|
836 |
+
"<SPECIAL_833>",
|
837 |
+
"<SPECIAL_834>",
|
838 |
+
"<SPECIAL_835>",
|
839 |
+
"<SPECIAL_836>",
|
840 |
+
"<SPECIAL_837>",
|
841 |
+
"<SPECIAL_838>",
|
842 |
+
"<SPECIAL_839>",
|
843 |
+
"<SPECIAL_840>",
|
844 |
+
"<SPECIAL_841>",
|
845 |
+
"<SPECIAL_842>",
|
846 |
+
"<SPECIAL_843>",
|
847 |
+
"<SPECIAL_844>",
|
848 |
+
"<SPECIAL_845>",
|
849 |
+
"<SPECIAL_846>",
|
850 |
+
"<SPECIAL_847>",
|
851 |
+
"<SPECIAL_848>",
|
852 |
+
"<SPECIAL_849>",
|
853 |
+
"<SPECIAL_850>",
|
854 |
+
"<SPECIAL_851>",
|
855 |
+
"<SPECIAL_852>",
|
856 |
+
"<SPECIAL_853>",
|
857 |
+
"<SPECIAL_854>",
|
858 |
+
"<SPECIAL_855>",
|
859 |
+
"<SPECIAL_856>",
|
860 |
+
"<SPECIAL_857>",
|
861 |
+
"<SPECIAL_858>",
|
862 |
+
"<SPECIAL_859>",
|
863 |
+
"<SPECIAL_860>",
|
864 |
+
"<SPECIAL_861>",
|
865 |
+
"<SPECIAL_862>",
|
866 |
+
"<SPECIAL_863>",
|
867 |
+
"<SPECIAL_864>",
|
868 |
+
"<SPECIAL_865>",
|
869 |
+
"<SPECIAL_866>",
|
870 |
+
"<SPECIAL_867>",
|
871 |
+
"<SPECIAL_868>",
|
872 |
+
"<SPECIAL_869>",
|
873 |
+
"<SPECIAL_870>",
|
874 |
+
"<SPECIAL_871>",
|
875 |
+
"<SPECIAL_872>",
|
876 |
+
"<SPECIAL_873>",
|
877 |
+
"<SPECIAL_874>",
|
878 |
+
"<SPECIAL_875>",
|
879 |
+
"<SPECIAL_876>",
|
880 |
+
"<SPECIAL_877>",
|
881 |
+
"<SPECIAL_878>",
|
882 |
+
"<SPECIAL_879>",
|
883 |
+
"<SPECIAL_880>",
|
884 |
+
"<SPECIAL_881>",
|
885 |
+
"<SPECIAL_882>",
|
886 |
+
"<SPECIAL_883>",
|
887 |
+
"<SPECIAL_884>",
|
888 |
+
"<SPECIAL_885>",
|
889 |
+
"<SPECIAL_886>",
|
890 |
+
"<SPECIAL_887>",
|
891 |
+
"<SPECIAL_888>",
|
892 |
+
"<SPECIAL_889>",
|
893 |
+
"<SPECIAL_890>",
|
894 |
+
"<SPECIAL_891>",
|
895 |
+
"<SPECIAL_892>",
|
896 |
+
"<SPECIAL_893>",
|
897 |
+
"<SPECIAL_894>",
|
898 |
+
"<SPECIAL_895>",
|
899 |
+
"<SPECIAL_896>",
|
900 |
+
"<SPECIAL_897>",
|
901 |
+
"<SPECIAL_898>",
|
902 |
+
"<SPECIAL_899>",
|
903 |
+
"<SPECIAL_900>",
|
904 |
+
"<SPECIAL_901>",
|
905 |
+
"<SPECIAL_902>",
|
906 |
+
"<SPECIAL_903>",
|
907 |
+
"<SPECIAL_904>",
|
908 |
+
"<SPECIAL_905>",
|
909 |
+
"<SPECIAL_906>",
|
910 |
+
"<SPECIAL_907>",
|
911 |
+
"<SPECIAL_908>",
|
912 |
+
"<SPECIAL_909>",
|
913 |
+
"<SPECIAL_910>",
|
914 |
+
"<SPECIAL_911>",
|
915 |
+
"<SPECIAL_912>",
|
916 |
+
"<SPECIAL_913>",
|
917 |
+
"<SPECIAL_914>",
|
918 |
+
"<SPECIAL_915>",
|
919 |
+
"<SPECIAL_916>",
|
920 |
+
"<SPECIAL_917>",
|
921 |
+
"<SPECIAL_918>",
|
922 |
+
"<SPECIAL_919>",
|
923 |
+
"<SPECIAL_920>",
|
924 |
+
"<SPECIAL_921>",
|
925 |
+
"<SPECIAL_922>",
|
926 |
+
"<SPECIAL_923>",
|
927 |
+
"<SPECIAL_924>",
|
928 |
+
"<SPECIAL_925>",
|
929 |
+
"<SPECIAL_926>",
|
930 |
+
"<SPECIAL_927>",
|
931 |
+
"<SPECIAL_928>",
|
932 |
+
"<SPECIAL_929>",
|
933 |
+
"<SPECIAL_930>",
|
934 |
+
"<SPECIAL_931>",
|
935 |
+
"<SPECIAL_932>",
|
936 |
+
"<SPECIAL_933>",
|
937 |
+
"<SPECIAL_934>",
|
938 |
+
"<SPECIAL_935>",
|
939 |
+
"<SPECIAL_936>",
|
940 |
+
"<SPECIAL_937>",
|
941 |
+
"<SPECIAL_938>",
|
942 |
+
"<SPECIAL_939>",
|
943 |
+
"<SPECIAL_940>",
|
944 |
+
"<SPECIAL_941>",
|
945 |
+
"<SPECIAL_942>",
|
946 |
+
"<SPECIAL_943>",
|
947 |
+
"<SPECIAL_944>",
|
948 |
+
"<SPECIAL_945>",
|
949 |
+
"<SPECIAL_946>",
|
950 |
+
"<SPECIAL_947>",
|
951 |
+
"<SPECIAL_948>",
|
952 |
+
"<SPECIAL_949>",
|
953 |
+
"<SPECIAL_950>",
|
954 |
+
"<SPECIAL_951>",
|
955 |
+
"<SPECIAL_952>",
|
956 |
+
"<SPECIAL_953>",
|
957 |
+
"<SPECIAL_954>",
|
958 |
+
"<SPECIAL_955>",
|
959 |
+
"<SPECIAL_956>",
|
960 |
+
"<SPECIAL_957>",
|
961 |
+
"<SPECIAL_958>",
|
962 |
+
"<SPECIAL_959>",
|
963 |
+
"<SPECIAL_960>",
|
964 |
+
"<SPECIAL_961>",
|
965 |
+
"<SPECIAL_962>",
|
966 |
+
"<SPECIAL_963>",
|
967 |
+
"<SPECIAL_964>",
|
968 |
+
"<SPECIAL_965>",
|
969 |
+
"<SPECIAL_966>",
|
970 |
+
"<SPECIAL_967>",
|
971 |
+
"<SPECIAL_968>",
|
972 |
+
"<SPECIAL_969>",
|
973 |
+
"<SPECIAL_970>",
|
974 |
+
"<SPECIAL_971>",
|
975 |
+
"<SPECIAL_972>",
|
976 |
+
"<SPECIAL_973>",
|
977 |
+
"<SPECIAL_974>",
|
978 |
+
"<SPECIAL_975>",
|
979 |
+
"<SPECIAL_976>",
|
980 |
+
"<SPECIAL_977>",
|
981 |
+
"<SPECIAL_978>",
|
982 |
+
"<SPECIAL_979>",
|
983 |
+
"<SPECIAL_980>",
|
984 |
+
"<SPECIAL_981>",
|
985 |
+
"<SPECIAL_982>",
|
986 |
+
"<SPECIAL_983>",
|
987 |
+
"<SPECIAL_984>",
|
988 |
+
"<SPECIAL_985>",
|
989 |
+
"<SPECIAL_986>",
|
990 |
+
"<SPECIAL_987>",
|
991 |
+
"<SPECIAL_988>",
|
992 |
+
"<SPECIAL_989>",
|
993 |
+
"<SPECIAL_990>",
|
994 |
+
"<SPECIAL_991>",
|
995 |
+
"<SPECIAL_992>",
|
996 |
+
"<SPECIAL_993>",
|
997 |
+
"<SPECIAL_994>",
|
998 |
+
"<SPECIAL_995>",
|
999 |
+
"<SPECIAL_996>",
|
1000 |
+
"<SPECIAL_997>",
|
1001 |
+
"<SPECIAL_998>",
|
1002 |
+
"<SPECIAL_999>"
|
1003 |
+
],
|
1004 |
+
"bos_token": {
|
1005 |
+
"content": "<s>",
|
1006 |
+
"lstrip": false,
|
1007 |
+
"normalized": false,
|
1008 |
+
"rstrip": false,
|
1009 |
+
"single_word": false
|
1010 |
+
},
|
1011 |
+
"eos_token": {
|
1012 |
+
"content": "<|im_end|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false
|
1017 |
+
},
|
1018 |
+
"pad_token": {
|
1019 |
+
"content": "<pad>",
|
1020 |
+
"lstrip": false,
|
1021 |
+
"normalized": false,
|
1022 |
+
"rstrip": false,
|
1023 |
+
"single_word": false
|
1024 |
+
},
|
1025 |
+
"unk_token": {
|
1026 |
+
"content": "<unk>",
|
1027 |
+
"lstrip": false,
|
1028 |
+
"normalized": false,
|
1029 |
+
"rstrip": false,
|
1030 |
+
"single_word": false
|
1031 |
+
}
|
1032 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a045f4cbf73aaef9b0d11f0d566839f6e3100f1803f9815da53886f04124d7fa
|
3 |
+
size 17078059
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
trainer_state.json
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 3.0,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 36,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.08695652173913043,
|
14 |
+
"grad_norm": 23.72541725578798,
|
15 |
+
"learning_rate": 1.5e-07,
|
16 |
+
"loss": 2.5595,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.17391304347826086,
|
21 |
+
"grad_norm": 25.577125119073894,
|
22 |
+
"learning_rate": 3e-07,
|
23 |
+
"loss": 2.5723,
|
24 |
+
"step": 2
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.2608695652173913,
|
28 |
+
"grad_norm": 24.323731617199012,
|
29 |
+
"learning_rate": 4.5000000000000003e-07,
|
30 |
+
"loss": 2.5538,
|
31 |
+
"step": 3
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.34782608695652173,
|
35 |
+
"grad_norm": 22.635470184221006,
|
36 |
+
"learning_rate": 6e-07,
|
37 |
+
"loss": 2.5638,
|
38 |
+
"step": 4
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.43478260869565216,
|
42 |
+
"grad_norm": 18.81006443117675,
|
43 |
+
"learning_rate": 7.5e-07,
|
44 |
+
"loss": 2.5169,
|
45 |
+
"step": 5
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.5217391304347826,
|
49 |
+
"grad_norm": 10.31372875147129,
|
50 |
+
"learning_rate": 9.000000000000001e-07,
|
51 |
+
"loss": 2.4823,
|
52 |
+
"step": 6
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.6086956521739131,
|
56 |
+
"grad_norm": 6.047487766464625,
|
57 |
+
"learning_rate": 1.0500000000000001e-06,
|
58 |
+
"loss": 2.4305,
|
59 |
+
"step": 7
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.6956521739130435,
|
63 |
+
"grad_norm": 5.1448782163300795,
|
64 |
+
"learning_rate": 1.2e-06,
|
65 |
+
"loss": 2.3992,
|
66 |
+
"step": 8
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.782608695652174,
|
70 |
+
"grad_norm": 6.319527460032345,
|
71 |
+
"learning_rate": 1.35e-06,
|
72 |
+
"loss": 2.3569,
|
73 |
+
"step": 9
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.8695652173913043,
|
77 |
+
"grad_norm": 5.178587770323235,
|
78 |
+
"learning_rate": 1.5e-06,
|
79 |
+
"loss": 2.3823,
|
80 |
+
"step": 10
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.9565217391304348,
|
84 |
+
"grad_norm": 4.345035693656394,
|
85 |
+
"learning_rate": 1.6499999999999999e-06,
|
86 |
+
"loss": 2.3763,
|
87 |
+
"step": 11
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 1.0,
|
91 |
+
"grad_norm": 4.345035693656394,
|
92 |
+
"learning_rate": 1.8000000000000001e-06,
|
93 |
+
"loss": 2.3516,
|
94 |
+
"step": 12
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 1.0869565217391304,
|
98 |
+
"grad_norm": 6.8965483544750485,
|
99 |
+
"learning_rate": 1.95e-06,
|
100 |
+
"loss": 2.3247,
|
101 |
+
"step": 13
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 1.1739130434782608,
|
105 |
+
"grad_norm": 4.514037765648883,
|
106 |
+
"learning_rate": 2.1000000000000002e-06,
|
107 |
+
"loss": 2.2789,
|
108 |
+
"step": 14
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 1.2608695652173914,
|
112 |
+
"grad_norm": 4.1037697641805675,
|
113 |
+
"learning_rate": 2.25e-06,
|
114 |
+
"loss": 2.2809,
|
115 |
+
"step": 15
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 1.3478260869565217,
|
119 |
+
"grad_norm": 9.467321099804414,
|
120 |
+
"learning_rate": 2.2434052017986548e-06,
|
121 |
+
"loss": 2.3034,
|
122 |
+
"step": 16
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 1.434782608695652,
|
126 |
+
"grad_norm": 3.846412370193112,
|
127 |
+
"learning_rate": 2.2236981251738474e-06,
|
128 |
+
"loss": 2.2531,
|
129 |
+
"step": 17
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.5217391304347827,
|
133 |
+
"grad_norm": 2.8638861083008282,
|
134 |
+
"learning_rate": 2.191109817580653e-06,
|
135 |
+
"loss": 2.2658,
|
136 |
+
"step": 18
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.608695652173913,
|
140 |
+
"grad_norm": 3.3754061157050796,
|
141 |
+
"learning_rate": 2.146022347129827e-06,
|
142 |
+
"loss": 2.248,
|
143 |
+
"step": 19
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 1.6956521739130435,
|
147 |
+
"grad_norm": 2.872218160561474,
|
148 |
+
"learning_rate": 2.0889643231885378e-06,
|
149 |
+
"loss": 2.2285,
|
150 |
+
"step": 20
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 1.7826086956521738,
|
154 |
+
"grad_norm": 3.1083184333248832,
|
155 |
+
"learning_rate": 2.020604698918849e-06,
|
156 |
+
"loss": 2.234,
|
157 |
+
"step": 21
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 1.8695652173913042,
|
161 |
+
"grad_norm": 3.56307962249585,
|
162 |
+
"learning_rate": 1.9417449284135222e-06,
|
163 |
+
"loss": 2.2117,
|
164 |
+
"step": 22
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 1.9565217391304348,
|
168 |
+
"grad_norm": 3.0969922866527027,
|
169 |
+
"learning_rate": 1.8533095703795562e-06,
|
170 |
+
"loss": 2.2288,
|
171 |
+
"step": 23
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 2.0,
|
175 |
+
"grad_norm": 4.56206180106739,
|
176 |
+
"learning_rate": 1.7563354485326805e-06,
|
177 |
+
"loss": 2.1789,
|
178 |
+
"step": 24
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 2.0869565217391304,
|
182 |
+
"grad_norm": 3.422562132986128,
|
183 |
+
"learning_rate": 1.651959495787264e-06,
|
184 |
+
"loss": 2.1124,
|
185 |
+
"step": 25
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 2.1739130434782608,
|
189 |
+
"grad_norm": 3.06225251545429,
|
190 |
+
"learning_rate": 1.541405424757404e-06,
|
191 |
+
"loss": 2.0822,
|
192 |
+
"step": 26
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 2.260869565217391,
|
196 |
+
"grad_norm": 3.5739299601482335,
|
197 |
+
"learning_rate": 1.4259693808453737e-06,
|
198 |
+
"loss": 2.0819,
|
199 |
+
"step": 27
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 2.3478260869565215,
|
203 |
+
"grad_norm": 3.27633625675635,
|
204 |
+
"learning_rate": 1.3070047461218605e-06,
|
205 |
+
"loss": 2.0425,
|
206 |
+
"step": 28
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 2.4347826086956523,
|
210 |
+
"grad_norm": 3.0275645098802992,
|
211 |
+
"learning_rate": 1.1859062721585949e-06,
|
212 |
+
"loss": 2.033,
|
213 |
+
"step": 29
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 2.5217391304347827,
|
217 |
+
"grad_norm": 3.2107781378583473,
|
218 |
+
"learning_rate": 1.0640937278414054e-06,
|
219 |
+
"loss": 2.0222,
|
220 |
+
"step": 30
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 2.608695652173913,
|
224 |
+
"grad_norm": 3.0228540401061905,
|
225 |
+
"learning_rate": 9.429952538781398e-07,
|
226 |
+
"loss": 2.0408,
|
227 |
+
"step": 31
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 2.6956521739130435,
|
231 |
+
"grad_norm": 3.3959547075086522,
|
232 |
+
"learning_rate": 8.240306191546268e-07,
|
233 |
+
"loss": 2.0087,
|
234 |
+
"step": 32
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.782608695652174,
|
238 |
+
"grad_norm": 2.7681067030431485,
|
239 |
+
"learning_rate": 7.085945752425963e-07,
|
240 |
+
"loss": 2.0291,
|
241 |
+
"step": 33
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.869565217391304,
|
245 |
+
"grad_norm": 2.845753287691284,
|
246 |
+
"learning_rate": 5.980405042127362e-07,
|
247 |
+
"loss": 2.017,
|
248 |
+
"step": 34
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 2.9565217391304346,
|
252 |
+
"grad_norm": 2.97978202958994,
|
253 |
+
"learning_rate": 4.936645514673199e-07,
|
254 |
+
"loss": 2.0195,
|
255 |
+
"step": 35
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 3.0,
|
259 |
+
"grad_norm": 2.97978202958994,
|
260 |
+
"learning_rate": 3.9669042962044397e-07,
|
261 |
+
"loss": 2.0179,
|
262 |
+
"step": 36
|
263 |
+
}
|
264 |
+
],
|
265 |
+
"logging_steps": 1,
|
266 |
+
"max_steps": 44,
|
267 |
+
"num_input_tokens_seen": 0,
|
268 |
+
"num_train_epochs": 4,
|
269 |
+
"save_steps": 6,
|
270 |
+
"stateful_callbacks": {
|
271 |
+
"TrainerControl": {
|
272 |
+
"args": {
|
273 |
+
"should_epoch_stop": false,
|
274 |
+
"should_evaluate": false,
|
275 |
+
"should_log": false,
|
276 |
+
"should_save": true,
|
277 |
+
"should_training_stop": false
|
278 |
+
},
|
279 |
+
"attributes": {}
|
280 |
+
}
|
281 |
+
},
|
282 |
+
"total_flos": 1.849397348401152e+16,
|
283 |
+
"train_batch_size": 2,
|
284 |
+
"trial_name": null,
|
285 |
+
"trial_params": null
|
286 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:250681eeb7b01a42567713067372f53069525d3f5dfc62d1fb3a98a70b910bff
|
3 |
+
size 8440
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|