|
import re |
|
from typing import cast |
|
|
|
import numpy as np |
|
import transformers.image_transforms as image_transforms |
|
import transformers.image_utils as image_utils |
|
import transformers.video_utils as video_utils |
|
from PIL.Image import Image |
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers.image_utils import ImageInput |
|
from transformers.models.qwen2 import Qwen2Tokenizer, Qwen2TokenizerFast |
|
from transformers.models.siglip import SiglipImageProcessor, SiglipImageProcessorFast |
|
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs |
|
from transformers.tokenization_utils_base import BatchEncoding, TextInput |
|
from transformers.video_utils import VideoInput, VideoMetadata |
|
|
|
|
|
class NVILALiteProcessorKwargs(ProcessingKwargs, total=False): |
|
_defaults = {} |
|
|
|
|
|
class NVILALiteProcessor(ProcessorMixin): |
|
attributes = [ |
|
"image_processor", |
|
"tokenizer", |
|
] |
|
image_processor_class = "AutoImageProcessor" |
|
tokenizer_class = "AutoTokenizer" |
|
_auto_class = "AutoProcessor" |
|
|
|
def __init__( |
|
self, |
|
image_processor: SiglipImageProcessor | SiglipImageProcessorFast, |
|
tokenizer: Qwen2Tokenizer | Qwen2TokenizerFast, |
|
chat_template: str | None = None, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
image_processor, |
|
tokenizer, |
|
chat_template=chat_template, |
|
**kwargs, |
|
) |
|
|
|
self.image_processor: SiglipImageProcessor | SiglipImageProcessorFast |
|
self.tokenizer: Qwen2Tokenizer | Qwen2TokenizerFast |
|
|
|
def __call__( |
|
self, |
|
*, |
|
text: TextInput | list[TextInput], |
|
images: ImageInput | None = None, |
|
videos: VideoInput | None = None, |
|
**kwargs: Unpack[NVILALiteProcessorKwargs], |
|
) -> BatchFeature: |
|
normalized_text, normalized_images, normalized_videos = self._normalize_inputs( |
|
text=text, |
|
images=images, |
|
videos=videos, |
|
) |
|
|
|
images_inputs, image_token_padding_strategy = ( |
|
self._preprocess_images( |
|
normalized_images, |
|
**kwargs, |
|
) |
|
if len(normalized_images) > 0 |
|
else (BatchFeature(), []) |
|
) |
|
|
|
videos_inputs, video_token_padding_strategy = ( |
|
self._preprocess_videos( |
|
normalized_videos, |
|
**kwargs, |
|
) |
|
if len(normalized_videos) > 0 |
|
else (BatchFeature(), []) |
|
) |
|
|
|
text_inputs = self._preprocess_text( |
|
normalized_text, |
|
image_token_padding_strategy=image_token_padding_strategy, |
|
video_token_padding_strategy=video_token_padding_strategy, |
|
**kwargs, |
|
) |
|
|
|
return BatchFeature( |
|
{ |
|
**text_inputs, |
|
**images_inputs, |
|
**videos_inputs, |
|
} |
|
) |
|
|
|
def batch_decode(self, *args, **kwargs) -> list[str]: |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
def _normalize_inputs( |
|
self, |
|
*, |
|
text: TextInput | list[TextInput], |
|
images: ImageInput | None, |
|
videos: VideoInput | None, |
|
) -> tuple[list[str], list[Image], list[list[Image]]]: |
|
if isinstance(text, list): |
|
normalized_text = text |
|
else: |
|
normalized_text = [text] |
|
|
|
if images is not None and images != []: |
|
image_flat_list = cast(list, image_utils.make_flat_list_of_images(images)) |
|
normalized_images = [cast(Image, image_transforms.to_pil_image(image)) for image in image_flat_list] |
|
else: |
|
normalized_images = [] |
|
|
|
if videos is not None and videos != []: |
|
video_list = cast(list[list], video_utils.make_batched_videos(videos)) |
|
normalized_videos = [ |
|
[cast(Image, image_transforms.to_pil_image(image)) for image in video] for video in video_list |
|
] |
|
else: |
|
normalized_videos = [] |
|
|
|
return normalized_text, normalized_images, normalized_videos |
|
|
|
def _preprocess_images( |
|
self, |
|
images: list[Image], |
|
**kwargs: Unpack[NVILALiteProcessorKwargs], |
|
) -> tuple[BatchFeature, list[list[int]]]: |
|
merged_kwargs = self._merge_kwargs( |
|
NVILALiteProcessorKwargs, |
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs, |
|
**kwargs, |
|
) |
|
|
|
images = [image.convert("RGB") for image in images] |
|
|
|
if len(images) == 1: |
|
assert self.image_processor.size["height"] == self.image_processor.size["width"] |
|
|
|
image_tiles = dynamic_preprocess( |
|
images[0], |
|
min_num=1, |
|
max_num=12, |
|
image_size=self.image_processor.size["height"], |
|
) |
|
|
|
pixel_values = self.image_processor( |
|
image_tiles, |
|
**merged_kwargs["images_kwargs"], |
|
)["pixel_values"] |
|
|
|
images_inputs = BatchFeature( |
|
{ |
|
"pixel_values": pixel_values, |
|
} |
|
) |
|
|
|
padding_strategy = [[121] * len(image_tiles)] |
|
|
|
else: |
|
pixel_values = self.image_processor( |
|
images, |
|
**merged_kwargs["images_kwargs"], |
|
)["pixel_values"] |
|
|
|
images_inputs = BatchFeature( |
|
{ |
|
"pixel_values": pixel_values, |
|
} |
|
) |
|
|
|
padding_strategy = [[121]] * len(images) |
|
|
|
return images_inputs, padding_strategy |
|
|
|
def _preprocess_text( |
|
self, |
|
text: list[str], |
|
*, |
|
image_token_padding_strategy: list[list[int]], |
|
video_token_padding_strategy: list[list[int]], |
|
**kwargs: Unpack[NVILALiteProcessorKwargs], |
|
) -> BatchEncoding: |
|
|
|
assert isinstance(self.tokenizer.image_token, str) |
|
assert isinstance(self.tokenizer.video_token, str) |
|
|
|
for media_token, padding_strategy in ( |
|
(self.tokenizer.image_token, image_token_padding_strategy), |
|
(self.tokenizer.video_token, video_token_padding_strategy), |
|
): |
|
assert sum([s.count(media_token) for s in text]) == len(padding_strategy) |
|
|
|
|
|
pad_lens = [len(x) for x in padding_strategy] |
|
text = [re.sub(rf"({re.escape(media_token)})", lambda _: media_token * pad_lens.pop(0), s) for s in text] |
|
|
|
|
|
if len(image_token_padding_strategy) == 1 and media_token == self.tokenizer.image_token: |
|
image_token = self.tokenizer.image_token |
|
assert isinstance(image_token, str) |
|
|
|
text = [re.sub(rf"({re.escape(image_token)})", r"\1\n", s) for s in text] |
|
|
|
|
|
pad_lens = [y for x in padding_strategy for y in x] |
|
pad_lens = [x + 1 for x in pad_lens] |
|
text = [re.sub(rf"({re.escape(media_token)})", lambda _: media_token * pad_lens.pop(0), s) for s in text] |
|
|
|
merged_kwargs = self._merge_kwargs( |
|
NVILALiteProcessorKwargs, |
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs, |
|
**kwargs, |
|
) |
|
|
|
text_inputs = self.tokenizer( |
|
text=text, |
|
**merged_kwargs["text_kwargs"], |
|
) |
|
|
|
|
|
lf_token_id = self.tokenizer.encode("\n")[0] |
|
assert isinstance(self.tokenizer.image_token_id, int) |
|
assert isinstance(self.tokenizer.video_token_id, int) |
|
|
|
input_ids = text_inputs.input_ids |
|
|
|
for media_token_id, padding_strategy in [ |
|
(self.tokenizer.image_token_id, image_token_padding_strategy), |
|
(self.tokenizer.video_token_id, video_token_padding_strategy), |
|
]: |
|
pad_lens = [y for x in padding_strategy for y in x] |
|
|
|
for i in range(len(input_ids)): |
|
j = 0 |
|
while j < len(input_ids[i]): |
|
if input_ids[i][j] != media_token_id: |
|
j += 1 |
|
continue |
|
|
|
j += pad_lens.pop(0) |
|
input_ids[i][j] = lf_token_id |
|
|
|
j += 1 |
|
|
|
return text_inputs |
|
|
|
def _preprocess_videos( |
|
self, |
|
videos: list[list[Image]], |
|
**kwargs: Unpack[NVILALiteProcessorKwargs], |
|
) -> tuple[BatchFeature, list[list[int]]]: |
|
merged_kwargs = self._merge_kwargs( |
|
NVILALiteProcessorKwargs, |
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs, |
|
**kwargs, |
|
) |
|
|
|
|
|
if merged_kwargs["videos_kwargs"].get("do_sample_frames"): |
|
videos = [ |
|
self._sample_frames( |
|
video, |
|
**merged_kwargs["videos_kwargs"], |
|
) |
|
for video in videos |
|
] |
|
|
|
videos = [[image.convert("RGB") for image in video] for video in videos] |
|
|
|
frames = [image for video in videos for image in video] |
|
pixel_values_videos = self.image_processor( |
|
frames, |
|
**merged_kwargs["images_kwargs"], |
|
)["pixel_values"] |
|
|
|
videos_inputs = BatchFeature( |
|
{ |
|
"pixel_values_videos": pixel_values_videos, |
|
} |
|
) |
|
|
|
padding_strategy = [[121] * len(video) for video in videos] |
|
|
|
return videos_inputs, padding_strategy |
|
|
|
def _sample_frames( |
|
self, |
|
video: list[Image], |
|
**kwargs: Unpack[VideosKwargs], |
|
) -> list[Image]: |
|
fps = kwargs.get("fps") |
|
num_frames = kwargs.get("num_frames") |
|
|
|
if num_frames is not None and fps is None: |
|
indices = np.round(np.linspace(0, len(video) - 1, num_frames)).astype(int) |
|
|
|
return [video[i] for i in indices] |
|
|
|
elif num_frames is None and fps is not None: |
|
video_metadata = kwargs.get("video_metadata") |
|
|
|
if isinstance(video_metadata, VideoMetadata): |
|
total_num_frames = video_metadata.total_num_frames |
|
duration = video_metadata.duration |
|
|
|
elif isinstance(video_metadata, dict): |
|
total_num_frames = video_metadata.get("total_num_frames") |
|
duration = video_metadata.get("duration") |
|
|
|
assert total_num_frames is not None |
|
assert duration is not None |
|
|
|
else: |
|
raise NotImplementedError |
|
|
|
indices = np.round(np.linspace(0, total_num_frames - 1, int(fps * duration))).astype(int) |
|
|
|
return [video[i] for i in indices] |
|
|
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
|
|
def dynamic_preprocess( |
|
image: Image, min_num: int, max_num: int, image_size: int, use_thumbnail: bool = True |
|
) -> list[Image]: |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = { |
|
(i, j) |
|
for n in range(min_num, max_num + 1) |
|
for i in range(1, n + 1) |
|
for j in range(1, n + 1) |
|
if i * j <= max_num and i * j >= min_num |
|
} |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size, |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
|
|
def find_closest_aspect_ratio( |
|
aspect_ratio: float, target_ratios: list[tuple[int, int]], width: int, height: int, image_size: int |
|
) -> tuple[int, int]: |
|
best_ratio_diff = float("inf") |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|