File size: 2,493 Bytes
4e7d847
 
 
 
27c750e
4e7d847
 
 
27c750e
 
 
 
 
4e7d847
 
 
 
 
 
 
3a859d7
 
4e7d847
3a859d7
 
 
4e7d847
 
27c750e
4e7d847
27c750e
 
 
4e7d847
27c750e
 
 
 
 
4e7d847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
base_model: Qwen/Qwen2-0.5B-Instruct
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- princeton-nlp/llama3-ultrafeedback
model-index:
- name: qwen2-0.5b-instruct-simpo-lr-5e-07-gamma-1.5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
## Description
This model was trained as part of the Reinforcement Learning - 24 project at Peking University, focusing on [simpo].

## Authors
- Ejafa Bassam
- Yaroslav Ponomarenko
# qwen2-0.5b-instruct-simpo-lr-5e-07-gamma-1.5

This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the princeton-nlp/llama3-ultrafeedback dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6594
- Rewards/chosen: -3.3473
- Rewards/rejected: -3.4798
- Rewards/accuracies: 0.5282
- Rewards/margins: 0.1325
- Logps/rejected: -1.3919
- Logps/chosen: -1.3389
- Logits/rejected: -5.2419
- Logits/chosen: -5.3398

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 1.6693        | 0.8549 | 400  | 1.6598          | -3.3421        | -3.4735          | 0.5282             | 0.1314          | -1.3894        | -1.3368      | -5.2590         | -5.3573       |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1