--- library_name: peft license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer model-index: - name: bustling-sheep-989 results: [] --- # bustling-sheep-989 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7152 - Hamming Loss: 0.4695 - Zero One Loss: 1.0 - Jaccard Score: 0.8591 - Hamming Loss Optimised: 0.1123 - Hamming Loss Threshold: 0.6789 - Zero One Loss Optimised: 0.8662 - Zero One Loss Threshold: 0.5944 - Jaccard Score Optimised: 0.8445 - Jaccard Score Threshold: 0.5669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.2020206916802435e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.8180574670796091,0.9816119412827323) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 400 | 0.7155 | 0.4695 | 1.0 | 0.8591 | 0.1123 | 0.6789 | 0.8662 | 0.5944 | 0.8445 | 0.5669 | | 0.717 | 2.0 | 800 | 0.7152 | 0.4695 | 1.0 | 0.8591 | 0.1123 | 0.6789 | 0.8662 | 0.5944 | 0.8445 | 0.5669 | ### Framework versions - PEFT 0.13.2 - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0