Delete README.md
Browse files
README.md
DELETED
@@ -1,634 +0,0 @@
|
|
1 |
-
---
|
2 |
-
base_model: google/madlad400-3b-mt
|
3 |
-
license: apache-2.0
|
4 |
-
language:
|
5 |
-
- multilingual
|
6 |
-
- en
|
7 |
-
- ru
|
8 |
-
- es
|
9 |
-
- fr
|
10 |
-
- de
|
11 |
-
- it
|
12 |
-
- pt
|
13 |
-
- pl
|
14 |
-
- nl
|
15 |
-
- vi
|
16 |
-
- tr
|
17 |
-
- sv
|
18 |
-
- id
|
19 |
-
- ro
|
20 |
-
- cs
|
21 |
-
- zh
|
22 |
-
- hu
|
23 |
-
- ja
|
24 |
-
- th
|
25 |
-
- fi
|
26 |
-
- fa
|
27 |
-
- uk
|
28 |
-
- da
|
29 |
-
- el
|
30 |
-
- "no"
|
31 |
-
- bg
|
32 |
-
- sk
|
33 |
-
- ko
|
34 |
-
- ar
|
35 |
-
- lt
|
36 |
-
- ca
|
37 |
-
- sl
|
38 |
-
- he
|
39 |
-
- et
|
40 |
-
- lv
|
41 |
-
- hi
|
42 |
-
- sq
|
43 |
-
- ms
|
44 |
-
- az
|
45 |
-
- sr
|
46 |
-
- ta
|
47 |
-
- hr
|
48 |
-
- kk
|
49 |
-
- is
|
50 |
-
- ml
|
51 |
-
- mr
|
52 |
-
- te
|
53 |
-
- af
|
54 |
-
- gl
|
55 |
-
- fil
|
56 |
-
- be
|
57 |
-
- mk
|
58 |
-
- eu
|
59 |
-
- bn
|
60 |
-
- ka
|
61 |
-
- mn
|
62 |
-
- bs
|
63 |
-
- uz
|
64 |
-
- ur
|
65 |
-
- sw
|
66 |
-
- yue
|
67 |
-
- ne
|
68 |
-
- kn
|
69 |
-
- kaa
|
70 |
-
- gu
|
71 |
-
- si
|
72 |
-
- cy
|
73 |
-
- eo
|
74 |
-
- la
|
75 |
-
- hy
|
76 |
-
- ky
|
77 |
-
- tg
|
78 |
-
- ga
|
79 |
-
- mt
|
80 |
-
- my
|
81 |
-
- km
|
82 |
-
- tt
|
83 |
-
- so
|
84 |
-
- ku
|
85 |
-
- ps
|
86 |
-
- pa
|
87 |
-
- rw
|
88 |
-
- lo
|
89 |
-
- ha
|
90 |
-
- dv
|
91 |
-
- fy
|
92 |
-
- lb
|
93 |
-
- ckb
|
94 |
-
- mg
|
95 |
-
- gd
|
96 |
-
- am
|
97 |
-
- ug
|
98 |
-
- ht
|
99 |
-
- grc
|
100 |
-
- hmn
|
101 |
-
- sd
|
102 |
-
- jv
|
103 |
-
- mi
|
104 |
-
- tk
|
105 |
-
- ceb
|
106 |
-
- yi
|
107 |
-
- ba
|
108 |
-
- fo
|
109 |
-
- or
|
110 |
-
- xh
|
111 |
-
- su
|
112 |
-
- kl
|
113 |
-
- ny
|
114 |
-
- sm
|
115 |
-
- sn
|
116 |
-
- co
|
117 |
-
- zu
|
118 |
-
- ig
|
119 |
-
- yo
|
120 |
-
- pap
|
121 |
-
- st
|
122 |
-
- haw
|
123 |
-
- as
|
124 |
-
- oc
|
125 |
-
- cv
|
126 |
-
- lus
|
127 |
-
- tet
|
128 |
-
- gsw
|
129 |
-
- sah
|
130 |
-
- br
|
131 |
-
- rm
|
132 |
-
- sa
|
133 |
-
- bo
|
134 |
-
- om
|
135 |
-
- se
|
136 |
-
- ce
|
137 |
-
- cnh
|
138 |
-
- ilo
|
139 |
-
- hil
|
140 |
-
- udm
|
141 |
-
- os
|
142 |
-
- lg
|
143 |
-
- ti
|
144 |
-
- vec
|
145 |
-
- ts
|
146 |
-
- tyv
|
147 |
-
- kbd
|
148 |
-
- ee
|
149 |
-
- iba
|
150 |
-
- av
|
151 |
-
- kha
|
152 |
-
- to
|
153 |
-
- tn
|
154 |
-
- nso
|
155 |
-
- fj
|
156 |
-
- zza
|
157 |
-
- ak
|
158 |
-
- ada
|
159 |
-
- otq
|
160 |
-
- dz
|
161 |
-
- bua
|
162 |
-
- cfm
|
163 |
-
- ln
|
164 |
-
- chm
|
165 |
-
- gn
|
166 |
-
- krc
|
167 |
-
- wa
|
168 |
-
- hif
|
169 |
-
- yua
|
170 |
-
- srn
|
171 |
-
- war
|
172 |
-
- rom
|
173 |
-
- bik
|
174 |
-
- pam
|
175 |
-
- sg
|
176 |
-
- lu
|
177 |
-
- ady
|
178 |
-
- kbp
|
179 |
-
- syr
|
180 |
-
- ltg
|
181 |
-
- myv
|
182 |
-
- iso
|
183 |
-
- kac
|
184 |
-
- bho
|
185 |
-
- ay
|
186 |
-
- kum
|
187 |
-
- qu
|
188 |
-
- za
|
189 |
-
- pag
|
190 |
-
- ngu
|
191 |
-
- ve
|
192 |
-
- pck
|
193 |
-
- zap
|
194 |
-
- tyz
|
195 |
-
- hui
|
196 |
-
- bbc
|
197 |
-
- tzo
|
198 |
-
- tiv
|
199 |
-
- ksd
|
200 |
-
- gom
|
201 |
-
- min
|
202 |
-
- ang
|
203 |
-
- nhe
|
204 |
-
- bgp
|
205 |
-
- nzi
|
206 |
-
- nnb
|
207 |
-
- nv
|
208 |
-
- zxx
|
209 |
-
- bci
|
210 |
-
- kv
|
211 |
-
- new
|
212 |
-
- mps
|
213 |
-
- alt
|
214 |
-
- meu
|
215 |
-
- bew
|
216 |
-
- fon
|
217 |
-
- iu
|
218 |
-
- abt
|
219 |
-
- mgh
|
220 |
-
- mnw
|
221 |
-
- tvl
|
222 |
-
- dov
|
223 |
-
- tlh
|
224 |
-
- ho
|
225 |
-
- kw
|
226 |
-
- mrj
|
227 |
-
- meo
|
228 |
-
- crh
|
229 |
-
- mbt
|
230 |
-
- emp
|
231 |
-
- ace
|
232 |
-
- ium
|
233 |
-
- mam
|
234 |
-
- gym
|
235 |
-
- mai
|
236 |
-
- crs
|
237 |
-
- pon
|
238 |
-
- ubu
|
239 |
-
- fip
|
240 |
-
- quc
|
241 |
-
- gv
|
242 |
-
- kj
|
243 |
-
- btx
|
244 |
-
- ape
|
245 |
-
- chk
|
246 |
-
- rcf
|
247 |
-
- shn
|
248 |
-
- tzh
|
249 |
-
- mdf
|
250 |
-
- ppk
|
251 |
-
- ss
|
252 |
-
- gag
|
253 |
-
- cab
|
254 |
-
- kri
|
255 |
-
- seh
|
256 |
-
- ibb
|
257 |
-
- tbz
|
258 |
-
- bru
|
259 |
-
- enq
|
260 |
-
- ach
|
261 |
-
- cuk
|
262 |
-
- kmb
|
263 |
-
- wo
|
264 |
-
- kek
|
265 |
-
- qub
|
266 |
-
- tab
|
267 |
-
- bts
|
268 |
-
- kos
|
269 |
-
- rwo
|
270 |
-
- cak
|
271 |
-
- tuc
|
272 |
-
- bum
|
273 |
-
- cjk
|
274 |
-
- gil
|
275 |
-
- stq
|
276 |
-
- tsg
|
277 |
-
- quh
|
278 |
-
- mak
|
279 |
-
- arn
|
280 |
-
- ban
|
281 |
-
- jiv
|
282 |
-
- sja
|
283 |
-
- yap
|
284 |
-
- tcy
|
285 |
-
- toj
|
286 |
-
- twu
|
287 |
-
- xal
|
288 |
-
- amu
|
289 |
-
- rmc
|
290 |
-
- hus
|
291 |
-
- nia
|
292 |
-
- kjh
|
293 |
-
- bm
|
294 |
-
- guh
|
295 |
-
- mas
|
296 |
-
- acf
|
297 |
-
- dtp
|
298 |
-
- ksw
|
299 |
-
- bzj
|
300 |
-
- din
|
301 |
-
- zne
|
302 |
-
- mad
|
303 |
-
- msi
|
304 |
-
- mag
|
305 |
-
- mkn
|
306 |
-
- kg
|
307 |
-
- lhu
|
308 |
-
- ch
|
309 |
-
- qvi
|
310 |
-
- mh
|
311 |
-
- djk
|
312 |
-
- sus
|
313 |
-
- mfe
|
314 |
-
- srm
|
315 |
-
- dyu
|
316 |
-
- ctu
|
317 |
-
- gui
|
318 |
-
- pau
|
319 |
-
- inb
|
320 |
-
- bi
|
321 |
-
- mni
|
322 |
-
- guc
|
323 |
-
- jam
|
324 |
-
- wal
|
325 |
-
- jac
|
326 |
-
- bas
|
327 |
-
- gor
|
328 |
-
- skr
|
329 |
-
- nyu
|
330 |
-
- noa
|
331 |
-
- sda
|
332 |
-
- gub
|
333 |
-
- nog
|
334 |
-
- cni
|
335 |
-
- teo
|
336 |
-
- tdx
|
337 |
-
- sxn
|
338 |
-
- rki
|
339 |
-
- nr
|
340 |
-
- frp
|
341 |
-
- alz
|
342 |
-
- taj
|
343 |
-
- lrc
|
344 |
-
- cce
|
345 |
-
- rn
|
346 |
-
- jvn
|
347 |
-
- hvn
|
348 |
-
- nij
|
349 |
-
- dwr
|
350 |
-
- izz
|
351 |
-
- msm
|
352 |
-
- bus
|
353 |
-
- ktu
|
354 |
-
- chr
|
355 |
-
- maz
|
356 |
-
- tzj
|
357 |
-
- suz
|
358 |
-
- knj
|
359 |
-
- bim
|
360 |
-
- gvl
|
361 |
-
- bqc
|
362 |
-
- tca
|
363 |
-
- pis
|
364 |
-
- prk
|
365 |
-
- laj
|
366 |
-
- mel
|
367 |
-
- qxr
|
368 |
-
- niq
|
369 |
-
- ahk
|
370 |
-
- shp
|
371 |
-
- hne
|
372 |
-
- spp
|
373 |
-
- koi
|
374 |
-
- krj
|
375 |
-
- quf
|
376 |
-
- luz
|
377 |
-
- agr
|
378 |
-
- tsc
|
379 |
-
- mqy
|
380 |
-
- gof
|
381 |
-
- gbm
|
382 |
-
- miq
|
383 |
-
- dje
|
384 |
-
- awa
|
385 |
-
- bjj
|
386 |
-
- qvz
|
387 |
-
- sjp
|
388 |
-
- tll
|
389 |
-
- raj
|
390 |
-
- kjg
|
391 |
-
- bgz
|
392 |
-
- quy
|
393 |
-
- cbk
|
394 |
-
- akb
|
395 |
-
- oj
|
396 |
-
- ify
|
397 |
-
- mey
|
398 |
-
- ks
|
399 |
-
- cac
|
400 |
-
- brx
|
401 |
-
- qup
|
402 |
-
- syl
|
403 |
-
- jax
|
404 |
-
- ff
|
405 |
-
- ber
|
406 |
-
- tks
|
407 |
-
- trp
|
408 |
-
- mrw
|
409 |
-
- adh
|
410 |
-
- smt
|
411 |
-
- srr
|
412 |
-
- ffm
|
413 |
-
- qvc
|
414 |
-
- mtr
|
415 |
-
- ann
|
416 |
-
- kaa
|
417 |
-
- aa
|
418 |
-
- noe
|
419 |
-
- nut
|
420 |
-
- gyn
|
421 |
-
- kwi
|
422 |
-
- xmm
|
423 |
-
- msb
|
424 |
-
library_name: transformers
|
425 |
-
tags:
|
426 |
-
- text2text-generation
|
427 |
-
- text-generation-inference
|
428 |
-
datasets:
|
429 |
-
- allenai/MADLAD-400
|
430 |
-
pipeline_tag: translation
|
431 |
-
|
432 |
-
widget:
|
433 |
-
- text: "<2en> Como vai, amigo?"
|
434 |
-
example_title: "Translation to English"
|
435 |
-
- text: "<2de> Do you speak German?"
|
436 |
-
example_title: "Translation to German"
|
437 |
-
|
438 |
-
---
|
439 |
-
|
440 |
-
# Model Card for MADLAD-400-3B-MT
|
441 |
-
|
442 |
-
# Table of Contents
|
443 |
-
|
444 |
-
0. [TL;DR](#TL;DR)
|
445 |
-
1. [Model Details](#model-details)
|
446 |
-
2. [Usage](#usage)
|
447 |
-
3. [Uses](#uses)
|
448 |
-
4. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
|
449 |
-
5. [Training Details](#training-details)
|
450 |
-
6. [Evaluation](#evaluation)
|
451 |
-
7. [Environmental Impact](#environmental-impact)
|
452 |
-
8. [Citation](#citation)
|
453 |
-
|
454 |
-
# TL;DR
|
455 |
-
|
456 |
-
MADLAD-400-3B-MT is a multilingual machine translation model based on the T5 architecture that was
|
457 |
-
trained on 1 trillion tokens covering over 450 languages using publicly available data.
|
458 |
-
It is competitive with models that are significantly larger.
|
459 |
-
|
460 |
-
**Disclaimer**: [Juarez Bochi](https://huggingface.co/jbochi), who was not involved in this research, converted
|
461 |
-
the original weights and wrote the contents of this model card based on the original paper and Flan-T5.
|
462 |
-
|
463 |
-
# Model Details
|
464 |
-
|
465 |
-
## Model Description
|
466 |
-
|
467 |
-
- **Model type:** Language model
|
468 |
-
- **Language(s) (NLP):** Multilingual (400+ languages)
|
469 |
-
- **License:** Apache 2.0
|
470 |
-
- **Related Models:** [All MADLAD-400 Checkpoints](https://huggingface.co/models?search=madlad)
|
471 |
-
- **Original Checkpoints:** [All Original MADLAD-400 Checkpoints](https://github.com/google-research/google-research/tree/master/madlad_400)
|
472 |
-
- **Resources for more information:**
|
473 |
-
- [Research paper](https://arxiv.org/abs/2309.04662)
|
474 |
-
- [GitHub Repo](https://github.com/google-research/t5x)
|
475 |
-
- [Hugging Face MADLAD-400 Docs (Similar to T5) ](https://huggingface.co/docs/transformers/model_doc/MADLAD-400) - [Pending PR](https://github.com/huggingface/transformers/pull/27471)
|
476 |
-
|
477 |
-
# Usage
|
478 |
-
|
479 |
-
Find below some example scripts on how to use the model:
|
480 |
-
|
481 |
-
## Using the Pytorch model with `transformers`
|
482 |
-
|
483 |
-
### Running the model on a CPU or GPU
|
484 |
-
|
485 |
-
<details>
|
486 |
-
<summary> Click to expand </summary>
|
487 |
-
|
488 |
-
First, install the Python packages that are required:
|
489 |
-
|
490 |
-
`pip install transformers accelerate sentencepiece`
|
491 |
-
|
492 |
-
```python
|
493 |
-
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
494 |
-
|
495 |
-
model_name = 'jbochi/madlad400-3b-mt'
|
496 |
-
model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto")
|
497 |
-
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
498 |
-
|
499 |
-
text = "<2pt> I love pizza!"
|
500 |
-
input_ids = tokenizer(text, return_tensors="pt").input_ids.to(model.device)
|
501 |
-
outputs = model.generate(input_ids=input_ids)
|
502 |
-
|
503 |
-
tokenizer.decode(outputs[0], skip_special_tokens=True)
|
504 |
-
# Eu adoro pizza!
|
505 |
-
```
|
506 |
-
|
507 |
-
</details>
|
508 |
-
|
509 |
-
## Running the model with Candle
|
510 |
-
|
511 |
-
<details>
|
512 |
-
<summary> Click to expand </summary>
|
513 |
-
|
514 |
-
Usage with [candle](https://github.com/huggingface/candle):
|
515 |
-
|
516 |
-
```bash
|
517 |
-
$ cargo run --example t5 --release -- \
|
518 |
-
--model-id "jbochi/madlad400-3b-mt" \
|
519 |
-
--prompt "<2de> How are you, my friend?" \
|
520 |
-
--decode --temperature 0
|
521 |
-
```
|
522 |
-
|
523 |
-
We also provide a quantized model (1.65 GB vs the original 11.8 GB file):
|
524 |
-
|
525 |
-
```
|
526 |
-
cargo run --example quantized-t5 --release -- \
|
527 |
-
--model-id "jbochi/madlad400-3b-mt" --weight-file "model-q4k.gguf" \
|
528 |
-
--prompt "<2de> How are you, my friend?" \
|
529 |
-
--temperature 0
|
530 |
-
...
|
531 |
-
Wie geht es dir, mein Freund?
|
532 |
-
```
|
533 |
-
|
534 |
-
</details>
|
535 |
-
|
536 |
-
|
537 |
-
# Uses
|
538 |
-
|
539 |
-
## Direct Use and Downstream Use
|
540 |
-
|
541 |
-
> Primary intended uses: Machine Translation and multilingual NLP tasks on over 400 languages.
|
542 |
-
> Primary intended users: Research community.
|
543 |
-
|
544 |
-
## Out-of-Scope Use
|
545 |
-
|
546 |
-
> These models are trained on general domain data and are therefore not meant to
|
547 |
-
> work on domain-specific models out-of-the box. Moreover, these research models have not been assessed
|
548 |
-
> for production usecases.
|
549 |
-
|
550 |
-
# Bias, Risks, and Limitations
|
551 |
-
|
552 |
-
> We note that we evaluate on only 204 of the languages supported by these models and on machine translation
|
553 |
-
> and few-shot machine translation tasks. Users must consider use of this model carefully for their own
|
554 |
-
> usecase.
|
555 |
-
|
556 |
-
## Ethical considerations and risks
|
557 |
-
|
558 |
-
> We trained these models with MADLAD-400 and publicly available data to create baseline models that
|
559 |
-
> support NLP for over 400 languages, with a focus on languages underrepresented in large-scale corpora.
|
560 |
-
> Given that these models were trained with web-crawled datasets that may contain sensitive, offensive or
|
561 |
-
> otherwise low-quality content despite extensive preprocessing, it is still possible that these issues to the
|
562 |
-
> underlying training data may cause differences in model performance and toxic (or otherwise problematic)
|
563 |
-
> output for certain domains. Moreover, large models are dual use technologies that have specific risks
|
564 |
-
> associated with their use and development. We point the reader to surveys such as those written by
|
565 |
-
> Weidinger et al. or Bommasani et al. for a more detailed discussion of these risks, and to Liebling
|
566 |
-
> et al. for a thorough discussion of the risks of machine translation systems.
|
567 |
-
|
568 |
-
## Known Limitations
|
569 |
-
|
570 |
-
More information needed
|
571 |
-
|
572 |
-
## Sensitive Use:
|
573 |
-
|
574 |
-
More information needed
|
575 |
-
|
576 |
-
# Training Details
|
577 |
-
|
578 |
-
> We train models of various sizes: a 3B, 32-layer parameter model,
|
579 |
-
> a 7.2B 48-layer parameter model and a 10.7B 32-layer parameter model.
|
580 |
-
> We share all parameters of the model across language pairs,
|
581 |
-
> and use a Sentence Piece Model with 256k tokens shared on both the encoder and decoder
|
582 |
-
> side. Each input sentence has a <2xx> token prepended to the source sentence to indicate the target
|
583 |
-
> language.
|
584 |
-
|
585 |
-
See the [research paper](https://arxiv.org/pdf/2309.04662.pdf) for further details.
|
586 |
-
|
587 |
-
## Training Data
|
588 |
-
|
589 |
-
> For both the machine translation and language model, MADLAD-400 is used. For the machine translation
|
590 |
-
> model, a combination of parallel datasources covering 157 languages is also used. Further details are
|
591 |
-
> described in the [paper](https://arxiv.org/pdf/2309.04662.pdf).
|
592 |
-
|
593 |
-
## Training Procedure
|
594 |
-
|
595 |
-
See the [research paper](https://arxiv.org/pdf/2309.04662.pdf) for further details.
|
596 |
-
|
597 |
-
# Evaluation
|
598 |
-
|
599 |
-
## Testing Data, Factors & Metrics
|
600 |
-
|
601 |
-
> For evaluation, we used WMT, NTREX, Flores-200 and Gatones datasets as described in Section 4.3 in the [paper](https://arxiv.org/pdf/2309.04662.pdf).
|
602 |
-
|
603 |
-
> The translation quality of this model varies based on language, as seen in the paper, and likely varies on
|
604 |
-
> domain, though we have not assessed this.
|
605 |
-
|
606 |
-
## Results
|
607 |
-
|
608 |
-

|
609 |
-
|
610 |
-

|
611 |
-
|
612 |
-

|
613 |
-
|
614 |
-
See the [research paper](https://arxiv.org/pdf/2309.04662.pdf) for further details.
|
615 |
-
|
616 |
-
# Environmental Impact
|
617 |
-
|
618 |
-
More information needed
|
619 |
-
|
620 |
-
# Citation
|
621 |
-
|
622 |
-
**BibTeX:**
|
623 |
-
|
624 |
-
```bibtex
|
625 |
-
@misc{kudugunta2023madlad400,
|
626 |
-
title={MADLAD-400: A Multilingual And Document-Level Large Audited Dataset},
|
627 |
-
author={Sneha Kudugunta and Isaac Caswell and Biao Zhang and Xavier Garcia and Christopher A. Choquette-Choo and Katherine Lee and Derrick Xin and Aditya Kusupati and Romi Stella and Ankur Bapna and Orhan Firat},
|
628 |
-
year={2023},
|
629 |
-
eprint={2309.04662},
|
630 |
-
archivePrefix={arXiv},
|
631 |
-
primaryClass={cs.CL}
|
632 |
-
}
|
633 |
-
```
|
634 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|