legolasyiu commited on
Commit
342e3db
·
verified ·
1 Parent(s): 849ecac

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -111,7 +111,7 @@ Developers can easily integrate Llama-3.1-Storm-8B into their projects using pop
111
  ```python
112
  import transformers
113
  import torch
114
- model_id = "akjindal53244/Llama-3.1-Storm-8B"
115
  pipeline = transformers.pipeline(
116
  "text-generation",
117
  model=model_id,
@@ -138,7 +138,7 @@ from transformers import AutoTokenizer, LlamaForCausalLM
138
  def format_prompt(user_query):
139
  template = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"""
140
  return template.format(user_query)
141
- model_id = 'akjindal53244/Llama-3.1-Storm-8B'
142
  tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
143
  model = LlamaForCausalLM.from_pretrained(
144
  model_id,
@@ -160,7 +160,7 @@ print(response) # Expected Output: '2 + 2 = 4'
160
  ```python
161
  from vllm import LLM, SamplingParams
162
  from transformers import AutoTokenizer
163
- model_id = "akjindal53244/Llama-3.1-Storm-8B" # FP8 model: "akjindal53244/Llama-3.1-Storm-8B-FP8-Dynamic"
164
  num_gpus = 1
165
  tokenizer = AutoTokenizer.from_pretrained(model_id)
166
  llm = LLM(model=model_id, tensor_parallel_size=num_gpus)
@@ -176,12 +176,12 @@ print(llm.generate([prompt], sampling_params)[0].outputs[0].text.strip()) # Exp
176
  #### Use with [LitGPT](https://github.com/Lightning-AI/litgpt)
177
  ```bash
178
  pip install 'litgpt[all]'
179
- litgpt download akjindal53244/Llama-3.1-Storm-8B --model_name meta-llama/Meta-Llama-3.1-8B
180
  ```
181
 
182
  ```python
183
  from litgpt import LLM
184
- llm = LLM.load(model="akjindal53244/Llama-3.1-Storm-8B")
185
  llm.generate("What do Llamas eat?")
186
  ```
187
 
@@ -190,7 +190,7 @@ llm.generate("What do Llamas eat?")
190
  [**Llama-3.1-Storm-8B**](https://huggingface.co/collections/akjindal53244/storm-66ba6c96b7e24ecb592787a9) has impressive function calling capabilities compared to Meta-Llama-3.1-8B-Instruct as demonstrated by the BFCL benchmark.
191
 
192
  #### Prompt Format for Function Calling
193
- Llama-3.1-Storm-8B is trained with specific system prompt for Function Calling:
194
  ```
195
  You are a function calling AI model. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into function. The user may use the terms function calling or tool use interchangeably.
196
  Here are the available functions:
@@ -206,7 +206,7 @@ Above system prompt should be used with passing `LIST_OF_TOOLS` as input.
206
  import json
207
  from vllm import LLM, SamplingParams
208
  from transformers import AutoTokenizer
209
- model_id = "akjindal53244/Llama-3.1-Storm-8B" # FP8 model: "akjindal53244/Llama-3.1-Storm-8B-FP8-Dynamic"
210
  num_gpus = 1
211
  tokenizer = AutoTokenizer.from_pretrained(model_id)
212
  llm = LLM(model=model_id, tensor_parallel_size=num_gpus)
 
111
  ```python
112
  import transformers
113
  import torch
114
+ model_id = "EpistemeAI2/FireStorm-Llama-3.1-8B"
115
  pipeline = transformers.pipeline(
116
  "text-generation",
117
  model=model_id,
 
138
  def format_prompt(user_query):
139
  template = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"""
140
  return template.format(user_query)
141
+ model_id = 'EpistemeAI2/FireStorm-Llama-3.1-8B'
142
  tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
143
  model = LlamaForCausalLM.from_pretrained(
144
  model_id,
 
160
  ```python
161
  from vllm import LLM, SamplingParams
162
  from transformers import AutoTokenizer
163
+ model_id = "akjindal53244/Llama-3.1-Storm-8B" # FP8 model: "EpistemeAI2/FireStorm-Llama-3.1-8B"
164
  num_gpus = 1
165
  tokenizer = AutoTokenizer.from_pretrained(model_id)
166
  llm = LLM(model=model_id, tensor_parallel_size=num_gpus)
 
176
  #### Use with [LitGPT](https://github.com/Lightning-AI/litgpt)
177
  ```bash
178
  pip install 'litgpt[all]'
179
+ litgpt download EpistemeAI2/FireStorm-Llama-3.1-8B --model_name meta-llama/Meta-Llama-3.1-8B
180
  ```
181
 
182
  ```python
183
  from litgpt import LLM
184
+ llm = LLM.load(model="EpistemeAI2/FireStorm-Llama-3.1-8B")
185
  llm.generate("What do Llamas eat?")
186
  ```
187
 
 
190
  [**Llama-3.1-Storm-8B**](https://huggingface.co/collections/akjindal53244/storm-66ba6c96b7e24ecb592787a9) has impressive function calling capabilities compared to Meta-Llama-3.1-8B-Instruct as demonstrated by the BFCL benchmark.
191
 
192
  #### Prompt Format for Function Calling
193
+ FireStorm-Llama-3.1-8B is trained with specific system prompt for Function Calling:
194
  ```
195
  You are a function calling AI model. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into function. The user may use the terms function calling or tool use interchangeably.
196
  Here are the available functions:
 
206
  import json
207
  from vllm import LLM, SamplingParams
208
  from transformers import AutoTokenizer
209
+ model_id = "EpistemeAI2/FireStorm-Llama-3.1-8B" # FP8 model: "akjindal53244/Llama-3.1-Storm-8B-FP8-Dynamic"
210
  num_gpus = 1
211
  tokenizer = AutoTokenizer.from_pretrained(model_id)
212
  llm = LLM(model=model_id, tensor_parallel_size=num_gpus)