Update README.md
Browse files
README.md
CHANGED
@@ -41,4 +41,143 @@ For more documentation on downloading with `huggingface-cli`, please see: [HF ->
|
|
41 |
|
42 |
This model can easily be ran in a CPU using [ONNXRuntime](https://onnxruntime.ai/).
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
This model can easily be ran in a CPU using [ONNXRuntime](https://onnxruntime.ai/).
|
43 |
|
44 |
+
Here is a sample script to run this models:
|
45 |
+
|
46 |
+
```python
|
47 |
+
#!/usr/bin/env python3
|
48 |
+
import whisper
|
49 |
+
import onnx
|
50 |
+
import sys
|
51 |
+
import time
|
52 |
+
import onnxruntime
|
53 |
+
from typing import Sequence, Optional
|
54 |
+
import numpy as np
|
55 |
+
from pathlib import Path
|
56 |
+
|
57 |
+
def run_whisper_decoder(decoder_model_path, execution_provider, session_options, decoder_output_names, cross_attn_tensors, num_new_tokens, provider_options = {}):
|
58 |
+
start = time.time()
|
59 |
+
decoder_session = onnxruntime.InferenceSession(decoder_model_path, sess_options=session_options, providers=[execution_provider], provider_options=[provider_options])
|
60 |
+
compile_time = time.time()
|
61 |
+
transcription = decoder_loop(decoder_session, decoder_output_names, cross_attn_tensors, num_new_tokens)
|
62 |
+
inference_time = time.time()
|
63 |
+
return transcription
|
64 |
+
|
65 |
+
|
66 |
+
def decoder_loop(decoder_session, decoder_output_names, cross_attn_tensors, num_new_tokens):
|
67 |
+
# Generate start of transcription tokens
|
68 |
+
tokenizer = whisper.tokenizer.get_tokenizer(multilingual=True)
|
69 |
+
first_tokens = np.array([tokenizer.sot, 0, tokenizer.transcribe, tokenizer.no_timestamps], dtype=np.int64)
|
70 |
+
|
71 |
+
# Self attention mask key, value vectors
|
72 |
+
self_attn_past_k = []
|
73 |
+
self_attn_past_v = []
|
74 |
+
for i in range(32):
|
75 |
+
self_attn_past_k.append(np.zeros((1, 20, 447, 64), dtype=np.float16))
|
76 |
+
self_attn_past_v.append(np.zeros((1, 20, 447, 64), dtype=np.float16))
|
77 |
+
|
78 |
+
# Cross attention
|
79 |
+
cross_attn_k = cross_attn_tensors[0::2]
|
80 |
+
cross_attn_v = cross_attn_tensors[1::2]
|
81 |
+
|
82 |
+
# Attention mask
|
83 |
+
attn_mask_size = 448
|
84 |
+
attn_mask = np.zeros((1,attn_mask_size), dtype=np.int64)
|
85 |
+
|
86 |
+
# Process first tokens
|
87 |
+
for j in range(len(first_tokens)):
|
88 |
+
tokens = np.array([first_tokens[j]], dtype=np.int64).reshape(1, 1)
|
89 |
+
attn_mask[0,-1 - j] = 1
|
90 |
+
|
91 |
+
decoder_input = {"input_ids": tokens, "attention_mask": attn_mask}
|
92 |
+
for i in range(32):
|
93 |
+
decoder_input[f"past_key_values.{str(i)}.key"] = self_attn_past_k[i]
|
94 |
+
decoder_input[f"past_key_values.{str(i)}.value"] = self_attn_past_v[i]
|
95 |
+
decoder_input[f"cross_attn.{str(i)}.key"] = cross_attn_k[i]
|
96 |
+
decoder_input[f"cross_attn.{str(i)}.value"] = cross_attn_v[i]
|
97 |
+
|
98 |
+
logits, *cache_tensors = decoder_session.run(decoder_output_names, decoder_input)
|
99 |
+
next_token = np.argmax(logits[0,0])
|
100 |
+
|
101 |
+
self_attn_k = cache_tensors[0::2]
|
102 |
+
self_attn_v = cache_tensors[1::2]
|
103 |
+
for i in range(32):
|
104 |
+
self_attn_past_k[i] = self_attn_k[i][:,:,1:,:]
|
105 |
+
self_attn_past_v[i] = self_attn_v[i][:,:,1:,:]
|
106 |
+
|
107 |
+
if (j == 0):
|
108 |
+
# set language token
|
109 |
+
first_tokens[1] = next_token
|
110 |
+
|
111 |
+
transcribed_tokens = [next_token]
|
112 |
+
for j in range(4, 4 + num_new_tokens):
|
113 |
+
tokens = np.array([transcribed_tokens[-1]], dtype=np.int64).reshape(1, 1)
|
114 |
+
attn_mask[0,-1 - j] = 1
|
115 |
+
|
116 |
+
decoder_input = {"input_ids": tokens, "attention_mask": attn_mask}
|
117 |
+
for i in range(32):
|
118 |
+
decoder_input[f"past_key_values.{str(i)}.key"] = self_attn_past_k[i]
|
119 |
+
decoder_input[f"past_key_values.{str(i)}.value"] = self_attn_past_v[i]
|
120 |
+
decoder_input[f"cross_attn.{str(i)}.key"] = cross_attn_k[i]
|
121 |
+
decoder_input[f"cross_attn.{str(i)}.value"] = cross_attn_v[i]
|
122 |
+
|
123 |
+
logits, *cache_tensors = decoder_session.run(decoder_output_names, decoder_input)
|
124 |
+
next_token = np.argmax(logits[0,0])
|
125 |
+
# print(j, next_token)
|
126 |
+
if next_token == tokenizer.eot: # end_of_transcription
|
127 |
+
break
|
128 |
+
transcribed_tokens.append(next_token)
|
129 |
+
self_attn_k = cache_tensors[0::2]
|
130 |
+
self_attn_v = cache_tensors[1::2]
|
131 |
+
for i in range(32):
|
132 |
+
self_attn_past_k[i] = self_attn_k[i][:,:,1:,:]
|
133 |
+
self_attn_past_v[i] = self_attn_v[i][:,:,1:,:]
|
134 |
+
|
135 |
+
return tokenizer.decode(transcribed_tokens)
|
136 |
+
|
137 |
+
|
138 |
+
def main(argv: Optional[Sequence[str]] = None):
|
139 |
+
num_seconds = 28.8
|
140 |
+
|
141 |
+
speech_path = 'sample_audio.wav'
|
142 |
+
encoder_model_path = 'whisper-large-v3-kvc-fp16-onnx/encoder/model.onnx'
|
143 |
+
decoder_model_path = 'whisper-large-v3-kvc-fp16-onnx/decoder/model.onnx'
|
144 |
+
|
145 |
+
# Load audio
|
146 |
+
print(f"Spectrogram speech audio file {speech_path}... ", end="")
|
147 |
+
audio = whisper.load_audio(speech_path)
|
148 |
+
audio = whisper.pad_or_trim(audio, length=int(num_seconds*16000))
|
149 |
+
mel = whisper.log_mel_spectrogram(audio, n_mels=128).unsqueeze(0) # Unsqueeze to set batch=1
|
150 |
+
print("OK")
|
151 |
+
|
152 |
+
print("Running encoder... ", end="")
|
153 |
+
|
154 |
+
# Session options
|
155 |
+
session_options = onnxruntime.SessionOptions()
|
156 |
+
# Disable all the graph optimizations
|
157 |
+
session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
158 |
+
|
159 |
+
# Encode
|
160 |
+
encoder = onnx.load(encoder_model_path, load_external_data=False)
|
161 |
+
encoder_input = {"mel": mel.numpy().astype('float16')}
|
162 |
+
encoder_output_names = [tensor.name for tensor in encoder.graph.output]
|
163 |
+
# CPU encoding
|
164 |
+
cpu_provider = 'CPUExecutionProvider'
|
165 |
+
enc_session_cpu = onnxruntime.InferenceSession(encoder_model_path, sess_options=session_options, providers=[cpu_provider])
|
166 |
+
cross_attn_tensors_cpu = enc_session_cpu.run(encoder_output_names, encoder_input)
|
167 |
+
|
168 |
+
print("OK")
|
169 |
+
|
170 |
+
# DECODE API PARAMS
|
171 |
+
max_context = 448
|
172 |
+
new_tokens = 20
|
173 |
+
|
174 |
+
# Run decoder model CPU
|
175 |
+
decoder = onnx.load(decoder_model_path, load_external_data=False)
|
176 |
+
decoder_output_names = [tensor.name for tensor in decoder.graph.output]
|
177 |
+
|
178 |
+
run_whisper_decoder(decoder_model_path, cpu_provider, session_options, decoder_output_names, cross_attn_tensors_cpu, new_tokens)
|
179 |
+
|
180 |
+
|
181 |
+
if __name__ == "__main__":
|
182 |
+
sys.exit(main(sys.argv[1:]))
|
183 |
+
```
|