--- library_name: transformers base_model: openai/whisper-large-turbo tags: - generated_from_trainer datasets: - Farhang87/whisperlargeturbo-Medical-ASR-Data metrics: - wer model-index: - name: Whisper Large Turbo Medical results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Medical ASR type: Farhang87/whisperlargeturbo-Medical-ASR-Data metrics: - name: Wer type: wer value: 4.344677769732078 --- # Whisper Large Turbo Medical This model is a fine-tuned version of [openai/whisper-large-turbo](https://huggingface.co/openai/whisper-large-turbo) on the Medical ASR dataset. It achieves the following results on the evaluation set: - Loss: 0.0672 - Wer: 4.3447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.2994 | 0.5405 | 100 | 0.2101 | 9.9928 | | 0.1405 | 1.0811 | 200 | 0.1212 | 5.7929 | | 0.0859 | 1.6216 | 300 | 0.0929 | 4.4895 | | 0.044 | 2.1622 | 400 | 0.0739 | 3.9585 | | 0.0248 | 2.7027 | 500 | 0.0672 | 4.3447 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.4.0+cu121 - Datasets 3.3.2 - Tokenizers 0.21.0