bweng commited on
Commit
69dceda
·
verified ·
1 Parent(s): 19da892

Delete JointDecision.mlmodelc

Browse files
JointDecision.mlmodelc/analytics/coremldata.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:bc69ef031ed427e888b1f3889d13eb373655edd5ac9927de20b5dae281b636b7
3
- size 243
 
 
 
 
JointDecision.mlmodelc/coremldata.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f56ded0404498e666ffcd84dda0c393924fc3581345ad03e41429ff560cb97b6
3
- size 534
 
 
 
 
JointDecision.mlmodelc/metadata.json DELETED
@@ -1,103 +0,0 @@
1
- [
2
- {
3
- "metadataOutputVersion" : "3.0",
4
- "shortDescription" : "Parakeet single-step joint decision (current frame)",
5
- "outputSchema" : [
6
- {
7
- "hasShapeFlexibility" : "0",
8
- "isOptional" : "0",
9
- "dataType" : "Int32",
10
- "formattedType" : "MultiArray (Int32 1 × 1 × 1)",
11
- "shortDescription" : "",
12
- "shape" : "[1, 1, 1]",
13
- "name" : "token_id",
14
- "type" : "MultiArray"
15
- },
16
- {
17
- "hasShapeFlexibility" : "0",
18
- "isOptional" : "0",
19
- "dataType" : "Float32",
20
- "formattedType" : "MultiArray (Float32 1 × 1 × 1)",
21
- "shortDescription" : "",
22
- "shape" : "[1, 1, 1]",
23
- "name" : "token_prob",
24
- "type" : "MultiArray"
25
- },
26
- {
27
- "hasShapeFlexibility" : "0",
28
- "isOptional" : "0",
29
- "dataType" : "Int32",
30
- "formattedType" : "MultiArray (Int32 1 × 1 × 1)",
31
- "shortDescription" : "",
32
- "shape" : "[1, 1, 1]",
33
- "name" : "duration",
34
- "type" : "MultiArray"
35
- }
36
- ],
37
- "storagePrecision" : "Float16",
38
- "modelParameters" : [
39
-
40
- ],
41
- "author" : "Fluid Inference",
42
- "specificationVersion" : 8,
43
- "mlProgramOperationTypeHistogram" : {
44
- "Ios17.reduceArgmax" : 2,
45
- "Ios17.squeeze" : 1,
46
- "Ios17.cast" : 4,
47
- "Ios17.linear" : 3,
48
- "Ios17.transpose" : 2,
49
- "Ios17.sliceByIndex" : 2,
50
- "Ios17.add" : 1,
51
- "Ios16.relu" : 1,
52
- "Ios16.softmax" : 1,
53
- "Ios17.gatherAlongAxis" : 1,
54
- "Ios17.expandDims" : 3
55
- },
56
- "computePrecision" : "Mixed (Float16, Float32, Int16, Int32)",
57
- "isUpdatable" : "0",
58
- "stateSchema" : [
59
-
60
- ],
61
- "availability" : {
62
- "macOS" : "14.0",
63
- "tvOS" : "17.0",
64
- "visionOS" : "1.0",
65
- "watchOS" : "10.0",
66
- "iOS" : "17.0",
67
- "macCatalyst" : "17.0"
68
- },
69
- "modelType" : {
70
- "name" : "MLModelType_mlProgram"
71
- },
72
- "inputSchema" : [
73
- {
74
- "hasShapeFlexibility" : "0",
75
- "isOptional" : "0",
76
- "dataType" : "Float32",
77
- "formattedType" : "MultiArray (Float32 1 × 1024 × 1)",
78
- "shortDescription" : "",
79
- "shape" : "[1, 1024, 1]",
80
- "name" : "encoder_step",
81
- "type" : "MultiArray"
82
- },
83
- {
84
- "hasShapeFlexibility" : "0",
85
- "isOptional" : "0",
86
- "dataType" : "Float32",
87
- "formattedType" : "MultiArray (Float32 1 × 640 × 1)",
88
- "shortDescription" : "",
89
- "shape" : "[1, 640, 1]",
90
- "name" : "decoder_step",
91
- "type" : "MultiArray"
92
- }
93
- ],
94
- "userDefinedMetadata" : {
95
- "com.github.apple.coremltools.conversion_date" : "2025-09-19",
96
- "com.github.apple.coremltools.source" : "torch==2.7.0",
97
- "com.github.apple.coremltools.version" : "9.0b1",
98
- "com.github.apple.coremltools.source_dialect" : "TorchScript"
99
- },
100
- "generatedClassName" : "parakeet_joint_decision_single_step",
101
- "method" : "predict"
102
- }
103
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
JointDecision.mlmodelc/model.mil DELETED
@@ -1,58 +0,0 @@
1
- program(1.0)
2
- [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.7.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
3
- {
4
- func main<ios17>(tensor<fp32, [1, 640, 1]> decoder_step, tensor<fp32, [1, 1024, 1]> encoder_step) {
5
- tensor<int32, [3]> input_1_perm_0 = const()[name = tensor<string, []>("input_1_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
6
- tensor<string, []> encoder_step_to_fp16_dtype_0 = const()[name = tensor<string, []>("encoder_step_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
7
- tensor<int32, [3]> input_3_perm_0 = const()[name = tensor<string, []>("input_3_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
8
- tensor<string, []> decoder_step_to_fp16_dtype_0 = const()[name = tensor<string, []>("decoder_step_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
9
- tensor<fp16, [640, 1024]> joint_module_enc_weight_to_fp16 = const()[name = tensor<string, []>("joint_module_enc_weight_to_fp16"), val = tensor<fp16, [640, 1024]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
10
- tensor<fp16, [640]> joint_module_enc_bias_to_fp16 = const()[name = tensor<string, []>("joint_module_enc_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1310848)))];
11
- tensor<fp16, [1, 1024, 1]> encoder_step_to_fp16 = cast(dtype = encoder_step_to_fp16_dtype_0, x = encoder_step)[name = tensor<string, []>("cast_3")];
12
- tensor<fp16, [1, 1, 1024]> input_1_cast_fp16 = transpose(perm = input_1_perm_0, x = encoder_step_to_fp16)[name = tensor<string, []>("transpose_1")];
13
- tensor<fp16, [1, 1, 640]> linear_0_cast_fp16 = linear(bias = joint_module_enc_bias_to_fp16, weight = joint_module_enc_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("linear_0_cast_fp16")];
14
- tensor<fp16, [640, 640]> joint_module_pred_weight_to_fp16 = const()[name = tensor<string, []>("joint_module_pred_weight_to_fp16"), val = tensor<fp16, [640, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1312192)))];
15
- tensor<fp16, [640]> joint_module_pred_bias_to_fp16 = const()[name = tensor<string, []>("joint_module_pred_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2131456)))];
16
- tensor<fp16, [1, 640, 1]> decoder_step_to_fp16 = cast(dtype = decoder_step_to_fp16_dtype_0, x = decoder_step)[name = tensor<string, []>("cast_2")];
17
- tensor<fp16, [1, 1, 640]> input_3_cast_fp16 = transpose(perm = input_3_perm_0, x = decoder_step_to_fp16)[name = tensor<string, []>("transpose_0")];
18
- tensor<fp16, [1, 1, 640]> linear_1_cast_fp16 = linear(bias = joint_module_pred_bias_to_fp16, weight = joint_module_pred_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("linear_1_cast_fp16")];
19
- tensor<int32, [1]> var_23_axes_0 = const()[name = tensor<string, []>("op_23_axes_0"), val = tensor<int32, [1]>([2])];
20
- tensor<fp16, [1, 1, 1, 640]> var_23_cast_fp16 = expand_dims(axes = var_23_axes_0, x = linear_0_cast_fp16)[name = tensor<string, []>("op_23_cast_fp16")];
21
- tensor<int32, [1]> var_24_axes_0 = const()[name = tensor<string, []>("op_24_axes_0"), val = tensor<int32, [1]>([1])];
22
- tensor<fp16, [1, 1, 1, 640]> var_24_cast_fp16 = expand_dims(axes = var_24_axes_0, x = linear_1_cast_fp16)[name = tensor<string, []>("op_24_cast_fp16")];
23
- tensor<fp16, [1, 1, 1, 640]> input_5_cast_fp16 = add(x = var_23_cast_fp16, y = var_24_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
24
- tensor<fp16, [1, 1, 1, 640]> input_7_cast_fp16 = relu(x = input_5_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
25
- tensor<fp16, [8198, 640]> joint_module_joint_net_2_weight_to_fp16 = const()[name = tensor<string, []>("joint_module_joint_net_2_weight_to_fp16"), val = tensor<fp16, [8198, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2132800)))];
26
- tensor<fp16, [8198]> joint_module_joint_net_2_bias_to_fp16 = const()[name = tensor<string, []>("joint_module_joint_net_2_bias_to_fp16"), val = tensor<fp16, [8198]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12626304)))];
27
- tensor<fp16, [1, 1, 1, 8198]> linear_2_cast_fp16 = linear(bias = joint_module_joint_net_2_bias_to_fp16, weight = joint_module_joint_net_2_weight_to_fp16, x = input_7_cast_fp16)[name = tensor<string, []>("linear_2_cast_fp16")];
28
- tensor<int32, [4]> token_logits_begin_0 = const()[name = tensor<string, []>("token_logits_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
29
- tensor<int32, [4]> token_logits_end_0 = const()[name = tensor<string, []>("token_logits_end_0"), val = tensor<int32, [4]>([1, 1, 1, 8193])];
30
- tensor<bool, [4]> token_logits_end_mask_0 = const()[name = tensor<string, []>("token_logits_end_mask_0"), val = tensor<bool, [4]>([true, true, true, false])];
31
- tensor<fp16, [1, 1, 1, 8193]> token_logits_cast_fp16 = slice_by_index(begin = token_logits_begin_0, end = token_logits_end_0, end_mask = token_logits_end_mask_0, x = linear_2_cast_fp16)[name = tensor<string, []>("token_logits_cast_fp16")];
32
- tensor<int32, [4]> duration_logits_begin_0 = const()[name = tensor<string, []>("duration_logits_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 8193])];
33
- tensor<int32, [4]> duration_logits_end_0 = const()[name = tensor<string, []>("duration_logits_end_0"), val = tensor<int32, [4]>([1, 1, 1, 8198])];
34
- tensor<bool, [4]> duration_logits_end_mask_0 = const()[name = tensor<string, []>("duration_logits_end_mask_0"), val = tensor<bool, [4]>([true, true, true, true])];
35
- tensor<fp16, [1, 1, 1, 5]> duration_logits_cast_fp16 = slice_by_index(begin = duration_logits_begin_0, end = duration_logits_end_0, end_mask = duration_logits_end_mask_0, x = linear_2_cast_fp16)[name = tensor<string, []>("duration_logits_cast_fp16")];
36
- tensor<int32, []> var_43_axis_0 = const()[name = tensor<string, []>("op_43_axis_0"), val = tensor<int32, []>(-1)];
37
- tensor<bool, []> var_43_keep_dims_0 = const()[name = tensor<string, []>("op_43_keep_dims_0"), val = tensor<bool, []>(false)];
38
- tensor<string, []> var_43_output_dtype_0 = const()[name = tensor<string, []>("op_43_output_dtype_0"), val = tensor<string, []>("int32")];
39
- tensor<int32, [1, 1, 1]> token_id = reduce_argmax(axis = var_43_axis_0, keep_dims = var_43_keep_dims_0, output_dtype = var_43_output_dtype_0, x = token_logits_cast_fp16)[name = tensor<string, []>("op_43_cast_fp16")];
40
- tensor<int32, []> var_49 = const()[name = tensor<string, []>("op_49"), val = tensor<int32, []>(-1)];
41
- tensor<fp16, [1, 1, 1, 8193]> token_probs_all_cast_fp16 = softmax(axis = var_49, x = token_logits_cast_fp16)[name = tensor<string, []>("token_probs_all_cast_fp16")];
42
- tensor<int32, [1]> var_58_axes_0 = const()[name = tensor<string, []>("op_58_axes_0"), val = tensor<int32, [1]>([-1])];
43
- tensor<int32, [1, 1, 1, 1]> var_58 = expand_dims(axes = var_58_axes_0, x = token_id)[name = tensor<string, []>("op_58")];
44
- tensor<int32, []> var_59 = const()[name = tensor<string, []>("op_59"), val = tensor<int32, []>(-1)];
45
- tensor<bool, []> var_61_validate_indices_0 = const()[name = tensor<string, []>("op_61_validate_indices_0"), val = tensor<bool, []>(false)];
46
- tensor<string, []> var_58_to_int16_dtype_0 = const()[name = tensor<string, []>("op_58_to_int16_dtype_0"), val = tensor<string, []>("int16")];
47
- tensor<int16, [1, 1, 1, 1]> var_58_to_int16 = cast(dtype = var_58_to_int16_dtype_0, x = var_58)[name = tensor<string, []>("cast_1")];
48
- tensor<fp16, [1, 1, 1, 1]> var_61_cast_fp16_cast_int16 = gather_along_axis(axis = var_59, indices = var_58_to_int16, validate_indices = var_61_validate_indices_0, x = token_probs_all_cast_fp16)[name = tensor<string, []>("op_61_cast_fp16_cast_int16")];
49
- tensor<int32, [1]> var_63_axes_0 = const()[name = tensor<string, []>("op_63_axes_0"), val = tensor<int32, [1]>([-1])];
50
- tensor<fp16, [1, 1, 1]> var_63_cast_fp16 = squeeze(axes = var_63_axes_0, x = var_61_cast_fp16_cast_int16)[name = tensor<string, []>("op_63_cast_fp16")];
51
- tensor<string, []> var_63_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_63_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
52
- tensor<int32, []> var_66_axis_0 = const()[name = tensor<string, []>("op_66_axis_0"), val = tensor<int32, []>(-1)];
53
- tensor<bool, []> var_66_keep_dims_0 = const()[name = tensor<string, []>("op_66_keep_dims_0"), val = tensor<bool, []>(false)];
54
- tensor<string, []> var_66_output_dtype_0 = const()[name = tensor<string, []>("op_66_output_dtype_0"), val = tensor<string, []>("int32")];
55
- tensor<int32, [1, 1, 1]> duration = reduce_argmax(axis = var_66_axis_0, keep_dims = var_66_keep_dims_0, output_dtype = var_66_output_dtype_0, x = duration_logits_cast_fp16)[name = tensor<string, []>("op_66_cast_fp16")];
56
- tensor<fp32, [1, 1, 1]> token_prob = cast(dtype = var_63_cast_fp16_to_fp32_dtype_0, x = var_63_cast_fp16)[name = tensor<string, []>("cast_0")];
57
- } -> (token_id, token_prob, duration);
58
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
JointDecision.mlmodelc/weights/weight.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4e0e63d840032f7f07ddb1d64446051166281e5491bf22da8a945c41f6eedb3e
3
- size 12642764