Text Generation
Safetensors
Chinese
Traditional Chinese Medicin
Multimodal LLM
multimodal
Image-text-to-text
Audio-text-to-text
File size: 15,180 Bytes
4de5eb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#                ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ
#           This file was automatically generated from src/transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py.
#               Do NOT edit this file manually as any edits will be overwritten by the generation of
#             the file from the modular. If any change should be done, please apply the change to the
#                          modular_qwen2_5_vl.py file directly. One of our CI enforces this.
#                ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ๐Ÿšจ
# coding=utf-8
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union, Optional

from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, VideoInput
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
import numpy as np


class Qwen2_5_VLVideosProcessorKwargs(VideosKwargs, total=False):
    fps: Union[List[float], float]


class Qwen2_5_VLProcessorKwargs(ProcessingKwargs, total=False):
    videos_kwargs: Qwen2_5_VLVideosProcessorKwargs
    _defaults = {
        "text_kwargs": {
            "padding": False,
        },
        "videos_kwargs": {"fps": 2.0},
    }


class Qwen2_5_VL_Audio_Processor(ProcessorMixin):
    r"""
    Constructs a Qwen2.5-VL processor which wraps a Qwen2.5-VL image processor and a Qwen2 tokenizer into a single processor.
    [`Qwen2_5_VLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
    [`~Qwen2_5_VLProcessor.__call__`] and [`~Qwen2_5_VLProcessor.decode`] for more information.
    Args:
        image_processor ([`Qwen2VLImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`Qwen2TokenizerFast`], *optional*):
            The tokenizer is a required input.
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
    """

    attributes = ["image_processor", "tokenizer","feature_extractor"]
    valid_kwargs = ["chat_template"]
    feature_extractor_class = "WhisperFeatureExtractor"

    image_processor_class = "AutoImageProcessor"
    tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")

    def __init__(self, image_processor=None, feature_extractor=None, tokenizer=None, chat_template=None, **kwargs):
    # def __init__(self, image_processor=None, tokenizer=None, **kwargs):
        # print(kwargs['chat_template'])
        self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
        self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
        self.audio_token = tokenizer.audio_token if hasattr(tokenizer, "audio_token") else "<|AUDIO|>"
        self.audio_bos_token = tokenizer.audio_bos_token if hasattr(tokenizer, "audio_bos_token") else "<|audio_bos|>"
        self.audio_eos_token = tokenizer.audio_eos_token if hasattr(tokenizer, "audio_eos_token") else "<|audio_eos|>"
        super().__init__(image_processor, feature_extractor, tokenizer, chat_template=chat_template)

    def __call__(
        self,
        images: ImageInput = None,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        videos: VideoInput = None,
        audios: Union[np.ndarray, List[np.ndarray]] = None,
        sampling_rate: Optional[int] = None,
        **kwargs: Unpack[Qwen2_5_VLProcessorKwargs],
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
        Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
                tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
            - **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
            - **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
            - **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
            - **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
        """
        output_kwargs = self._merge_kwargs(
            Qwen2_5_VLProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )
        if images is not None:
            image_inputs = self.image_processor(images=images, videos=None, **output_kwargs["images_kwargs"])
            image_grid_thw = image_inputs["image_grid_thw"]
        else:
            image_inputs = {}
            image_grid_thw = None

        if videos is not None:
            videos_inputs = self.image_processor(images=None, videos=videos, **output_kwargs["images_kwargs"])
            video_grid_thw = videos_inputs["video_grid_thw"]

            fps = output_kwargs["videos_kwargs"].pop("fps", 2.0)
            if isinstance(fps, (int, float)):
                second_per_grid_ts = [self.image_processor.temporal_patch_size / fps] * len(video_grid_thw)
            elif hasattr(fps, "__len__") and len(fps) == len(video_grid_thw):
                second_per_grid_ts = [self.image_processor.temporal_patch_size / tmp for tmp in fps]
            else:
                raise ValueError(
                    f"The length of fps ({len(fps) if hasattr(fps, '__len__') else fps}) must be equal to the length of video_grid_thw ({len(video_grid_thw)}) or fps should be a single number."
                )
            videos_inputs.update({"second_per_grid_ts": second_per_grid_ts})

        else:
            videos_inputs = {}
            video_grid_thw = None

        if audios is not None:
            new_kwargs = {k: kwargs[k] for k in  kwargs if k not in ['padding', 'truncation','max_length']}

            audio_inputs = self.feature_extractor(
                audios, sampling_rate=sampling_rate, return_attention_mask=True, padding="max_length", **new_kwargs
            )

            audio_inputs["feature_attention_mask"] = audio_inputs.pop(
                "attention_mask"
            )  # rename attention_mask to prevent conflicts later on

            expanded_text = []
            audio_lengths = audio_inputs["feature_attention_mask"].sum(-1).tolist()

            for sample in text:
                replace_str = []
                while self.audio_token in sample:
                    audio_length = audio_lengths.pop(0)
                    input_length = (audio_length - 1) // 2 + 1
                    num_audio_tokens = (input_length - 2) // 2 + 1

                    expanded_audio_token = self.audio_token * num_audio_tokens

                    audio_token_start_idx = sample.find(self.audio_token)
                    audio_token_end_idx = audio_token_start_idx + len(self.audio_token)

                    has_bos = (
                        sample[audio_token_start_idx - len(self.audio_bos_token) : audio_token_start_idx]
                        == self.audio_bos_token
                    )
                    has_eos = (
                        sample[audio_token_end_idx : audio_token_end_idx + len(self.audio_eos_token)]
                        == self.audio_eos_token
                    )

                    # Check if this audio token is surrounded by bos/eos tokens
                    if not has_bos and not has_eos:
                        expanded_audio_token = self.audio_bos_token + expanded_audio_token + self.audio_eos_token

                    replace_str.append(expanded_audio_token)
                    sample = sample.replace(self.audio_token, "<placeholder>", 1)

                while "<placeholder>" in sample:
                    sample = sample.replace("<placeholder>", replace_str.pop(0), 1)
                expanded_text.append(sample)
            text = expanded_text
        else:
            audio_inputs = {}

        if not isinstance(text, list):
            text = [text]

        if image_grid_thw is not None:
            merge_length = self.image_processor.merge_size**2
            index = 0
            for i in range(len(text)):
                while self.image_token in text[i]:
                    text[i] = text[i].replace(
                        self.image_token,
                        "<|placeholder|>" * (image_grid_thw[index].prod() // merge_length),
                        1,
                    )
                    index += 1
                text[i] = text[i].replace("<|placeholder|>", self.image_token)

        if video_grid_thw is not None:
            merge_length = self.image_processor.merge_size**2
            index = 0
            for i in range(len(text)):
                while self.video_token in text[i]:
                    text[i] = text[i].replace(
                        self.video_token,
                        "<|placeholder|>" * (video_grid_thw[index].prod() // merge_length),
                        1,
                    )
                    index += 1
                text[i] = text[i].replace("<|placeholder|>", self.video_token)

        text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])

        return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs, **audio_inputs})

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    def post_process_image_text_to_text(
        self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs
    ):
        """
        Post-process the output of the model to decode the text.

        Args:
            generated_outputs (`torch.Tensor` or `np.ndarray`):
                The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
                or `(sequence_length,)`.
            skip_special_tokens (`bool`, *optional*, defaults to `True`):
                Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
            Clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
                Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
            **kwargs:
                Additional arguments to be passed to the tokenizer's `batch_decode method`.

        Returns:
            `List[str]`: The decoded text.
        """
        return self.tokenizer.batch_decode(
            generated_outputs,
            skip_special_tokens=skip_special_tokens,
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            **kwargs,
        )

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        names_from_processor = list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
        return names_from_processor + ["second_per_grid_ts"]


__all__ = ["Qwen2_5_VL_Audio_Processor"]