Duplicate from allenai/Molmo-72B-0924
Browse filesCo-authored-by: Luca Soldaini <[email protected]>
This view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +35 -0
- Notice.txt +3 -0
- README.md +210 -0
- added_tokens.json +428 -0
- config.json +32 -0
- config_molmo.py +60 -0
- generation_config.json +4 -0
- image_preprocessing_molmo.py +546 -0
- merges.txt +0 -0
- model-00001-of-00083.safetensors +3 -0
- model-00002-of-00083.safetensors +3 -0
- model-00003-of-00083.safetensors +3 -0
- model-00004-of-00083.safetensors +3 -0
- model-00005-of-00083.safetensors +3 -0
- model-00006-of-00083.safetensors +3 -0
- model-00007-of-00083.safetensors +3 -0
- model-00008-of-00083.safetensors +3 -0
- model-00009-of-00083.safetensors +3 -0
- model-00010-of-00083.safetensors +3 -0
- model-00011-of-00083.safetensors +3 -0
- model-00012-of-00083.safetensors +3 -0
- model-00013-of-00083.safetensors +3 -0
- model-00014-of-00083.safetensors +3 -0
- model-00015-of-00083.safetensors +3 -0
- model-00016-of-00083.safetensors +3 -0
- model-00017-of-00083.safetensors +3 -0
- model-00018-of-00083.safetensors +3 -0
- model-00019-of-00083.safetensors +3 -0
- model-00020-of-00083.safetensors +3 -0
- model-00021-of-00083.safetensors +3 -0
- model-00022-of-00083.safetensors +3 -0
- model-00023-of-00083.safetensors +3 -0
- model-00024-of-00083.safetensors +3 -0
- model-00025-of-00083.safetensors +3 -0
- model-00026-of-00083.safetensors +3 -0
- model-00027-of-00083.safetensors +3 -0
- model-00028-of-00083.safetensors +3 -0
- model-00029-of-00083.safetensors +3 -0
- model-00030-of-00083.safetensors +3 -0
- model-00031-of-00083.safetensors +3 -0
- model-00032-of-00083.safetensors +3 -0
- model-00033-of-00083.safetensors +3 -0
- model-00034-of-00083.safetensors +3 -0
- model-00035-of-00083.safetensors +3 -0
- model-00036-of-00083.safetensors +3 -0
- model-00037-of-00083.safetensors +3 -0
- model-00038-of-00083.safetensors +3 -0
- model-00039-of-00083.safetensors +3 -0
- model-00040-of-00083.safetensors +3 -0
- model-00041-of-00083.safetensors +3 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
Notice.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
Molmo-72B is trained on Qwen2-70B as the base model. Tongyi Qianwen is licensed under the Tongyi Qianwen LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved.
|
2 |
+
|
3 |
+
A copy of the license for Qwen2-70B can be found at https://huggingface.co/Qwen/Qwen2-72B/blob/main/LICENSE.
|
README.md
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- openai/clip-vit-large-patch14-336
|
7 |
+
- Qwen/Qwen2-72B
|
8 |
+
pipeline_tag: image-text-to-text
|
9 |
+
tags:
|
10 |
+
- multimodal
|
11 |
+
- olmo
|
12 |
+
- molmo
|
13 |
+
- pixmo
|
14 |
+
library_name: transformers
|
15 |
+
---
|
16 |
+
|
17 |
+
<img src="molmo_logo.png" alt="Logo for the Molmo Project" style="width: auto; height: 50px;">
|
18 |
+
|
19 |
+
# Molmo 72B
|
20 |
+
|
21 |
+
Molmo is a family of open vision-language models developed by the Allen Institute for AI. Molmo models are trained on PixMo, a dataset of 1 million, highly-curated image-text pairs. It has state-of-the-art performance among multimodal models with a similar size while being fully open-source. You can find all models in the Molmo family [here](https://huggingface.co/collections/allenai/molmo-66f379e6fe3b8ef090a8ca19).
|
22 |
+
**Learn more** about the Molmo family [in our announcement blog post](https://molmo.allenai.org/blog) or the [paper](https://huggingface.co/papers/2409.17146).
|
23 |
+
|
24 |
+
Molmo 72B is based on [Qwen2-72B](https://huggingface.co/Qwen/Qwen2-72B) and uses [OpenAI CLIP](https://huggingface.co/openai/clip-vit-large-patch14-336) as vision backbone.
|
25 |
+
Molmo-72B achieves the highest academic benchmark score and ranks second on human evaluation, just slightly behind GPT-4o.
|
26 |
+
|
27 |
+
This checkpoint is a **preview** of the Molmo release. All artifacts used in creating Molmo (PixMo dataset, training code, evaluations, intermediate checkpoints) will be made available at a later date, furthering our commitment to open-source AI development and reproducibility.
|
28 |
+
|
29 |
+
[**Sign up here**](https://docs.google.com/forms/d/e/1FAIpQLSdML1MhNNBDsCHpgWG65Oydg2SjZzVasyqlP08nBrWjZp_c7A/viewform) to be the first to know when artifacts are released.
|
30 |
+
|
31 |
+
Quick links:
|
32 |
+
- 💬 [Demo](https://molmo.allenai.org/)
|
33 |
+
- 📂 [All Models](https://huggingface.co/collections/allenai/molmo-66f379e6fe3b8ef090a8ca19)
|
34 |
+
- 📃 [Paper](https://molmo.allenai.org/paper.pdf)
|
35 |
+
- 🎥 [Blog with Videos](https://molmo.allenai.org/blog)
|
36 |
+
|
37 |
+
## Quick Start
|
38 |
+
|
39 |
+
To run Molmo, first install dependencies:
|
40 |
+
|
41 |
+
```bash
|
42 |
+
pip install einops torchvision
|
43 |
+
```
|
44 |
+
|
45 |
+
Then, follow these steps:
|
46 |
+
|
47 |
+
```python
|
48 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
49 |
+
from PIL import Image
|
50 |
+
import requests
|
51 |
+
import torch
|
52 |
+
|
53 |
+
# load the processor
|
54 |
+
processor = AutoProcessor.from_pretrained(
|
55 |
+
'allenai/Molmo-72B-0924',
|
56 |
+
trust_remote_code=True,
|
57 |
+
torch_dtype='auto',
|
58 |
+
device_map='auto'
|
59 |
+
)
|
60 |
+
|
61 |
+
# load the model
|
62 |
+
model = AutoModelForCausalLM.from_pretrained(
|
63 |
+
'allenai/Molmo-72B-0924',
|
64 |
+
trust_remote_code=True,
|
65 |
+
torch_dtype='auto',
|
66 |
+
device_map='auto'
|
67 |
+
)
|
68 |
+
|
69 |
+
# process the image and text
|
70 |
+
inputs = processor.process(
|
71 |
+
images=[Image.open(requests.get("https://picsum.photos/id/237/536/354", stream=True).raw)],
|
72 |
+
text="Describe this image."
|
73 |
+
)
|
74 |
+
|
75 |
+
# move inputs to the correct device and make a batch of size 1
|
76 |
+
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
|
77 |
+
|
78 |
+
# generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated
|
79 |
+
output = model.generate_from_batch(
|
80 |
+
inputs,
|
81 |
+
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
|
82 |
+
tokenizer=processor.tokenizer
|
83 |
+
)
|
84 |
+
|
85 |
+
# only get generated tokens; decode them to text
|
86 |
+
generated_tokens = output[0,inputs['input_ids'].size(1):]
|
87 |
+
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
88 |
+
|
89 |
+
# print the generated text
|
90 |
+
print(generated_text)
|
91 |
+
|
92 |
+
# >>> This image features an adorable black Labrador puppy sitting on a wooden deck.
|
93 |
+
# The puppy is positioned in the center of the frame, looking up at the camera...
|
94 |
+
```
|
95 |
+
|
96 |
+
To make inference more efficient, run with autocast:
|
97 |
+
|
98 |
+
|
99 |
+
```python
|
100 |
+
with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16):
|
101 |
+
output = model.generate_from_batch(
|
102 |
+
inputs,
|
103 |
+
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
|
104 |
+
tokenizer=processor.tokenizer
|
105 |
+
)
|
106 |
+
```
|
107 |
+
|
108 |
+
We did most of our evaluation in this setting (autocast on, but float32 weights)
|
109 |
+
|
110 |
+
To even further reduce the memory requirements, the model can be run with bfloat16 weights:
|
111 |
+
|
112 |
+
```
|
113 |
+
model.to(dtype=torch.bfloat16)
|
114 |
+
inputs["images"] = inputs["images"].to(torch.bfloat16)
|
115 |
+
output = model.generate_from_batch(
|
116 |
+
inputs,
|
117 |
+
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
|
118 |
+
tokenizer=processor.tokenizer
|
119 |
+
)
|
120 |
+
```
|
121 |
+
Note that we have observed that this can change the output of the model compared to running with float32 weights.
|
122 |
+
|
123 |
+
## Evaluations
|
124 |
+
|
125 |
+
| Model | Average Score on 11 Academic Benchmarks | Human Preference Elo Rating |
|
126 |
+
|-----------------------------|-----------------------------------------|-----------------------------|
|
127 |
+
| **Molmo 72B (this model)** | **81.2** | **1077** |
|
128 |
+
| Molmo 7B-D | 77.3 | 1056 |
|
129 |
+
| Molmo 7B-O | 74.6 | 1051 |
|
130 |
+
| MolmoE 1B | 68.6 | 1032 |
|
131 |
+
| GPT-4o | 78.5 | 1079 |
|
132 |
+
| GPT-4V | 71.1 | 1041 |
|
133 |
+
| Gemini 1.5 Pro | 78.3 | 1074 |
|
134 |
+
| Gemini 1.5 Flash | 75.1 | 1054 |
|
135 |
+
| Claude 3.5 Sonnet | 76.7 | 1069 |
|
136 |
+
| Claude 3 Opus | 66.4 | 971 |
|
137 |
+
| Claude 3 Haiku | 65.3 | 999 |
|
138 |
+
| Qwen VL2 72B | 79.4 | 1037 |
|
139 |
+
| Qwen VL2 7B | 73.7 | 1025 |
|
140 |
+
| Intern VL2 LLAMA 76B | 77.1 | 1018 |
|
141 |
+
| Intern VL2 8B | 69.4 | 953 |
|
142 |
+
| Pixtral 12B | 69.5 | 1016 |
|
143 |
+
| Phi3.5-Vision 4B | 59.7 | 982 |
|
144 |
+
| PaliGemma 3B | 50.0 | 937 |
|
145 |
+
| LLAVA OneVision 72B | 76.6 | 1051 |
|
146 |
+
| LLAVA OneVision 7B | 72.0 | 1024 |
|
147 |
+
| Cambrian-1 34B | 66.8 | 953 |
|
148 |
+
| Cambrian-1 8B | 63.4 | 952 |
|
149 |
+
| xGen - MM - Interleave 4B | 59.5 | 979 |
|
150 |
+
| LLAVA-1.5 13B | 43.9 | 960 |
|
151 |
+
| LLAVA-1.5 7B | 40.7 | 951 |
|
152 |
+
|
153 |
+
*Benchmarks: AI2D test, ChartQA test, VQA v2.0 test, DocQA test, InfographicVQA test, TextVQA val, RealWorldQA, MMMU val, MathVista testmini, CountBenchQA, Flickr Count (we collected this new dataset that is significantly harder than CountBenchQA).*
|
154 |
+
|
155 |
+
## FAQs
|
156 |
+
|
157 |
+
### I'm getting an error a broadcast error when processing images!
|
158 |
+
|
159 |
+
Your image might not be in RGB format. You can convert it using the following code snippet:
|
160 |
+
|
161 |
+
```python
|
162 |
+
from PIL import Image
|
163 |
+
|
164 |
+
image = Image.open(...)
|
165 |
+
|
166 |
+
if image.mode != "RGB":
|
167 |
+
image = image.convert("RGB")
|
168 |
+
```
|
169 |
+
|
170 |
+
### Molmo doesn't work great with transparent images!
|
171 |
+
|
172 |
+
We received reports that Molmo models might struggle with transparent images.
|
173 |
+
For the time being, we recommend adding a white or dark background to your images before passing them to the model. The code snippet below shows how to do this using the Python Imaging Library (PIL):
|
174 |
+
|
175 |
+
```python
|
176 |
+
|
177 |
+
# Load the image
|
178 |
+
url = "..."
|
179 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
180 |
+
|
181 |
+
# Convert the image to grayscale to calculate brightness
|
182 |
+
gray_image = image.convert('L') # Convert to grayscale
|
183 |
+
|
184 |
+
# Calculate the average brightness
|
185 |
+
stat = ImageStat.Stat(gray_image)
|
186 |
+
average_brightness = stat.mean[0] # Get the average value
|
187 |
+
|
188 |
+
# Define background color based on brightness (threshold can be adjusted)
|
189 |
+
bg_color = (0, 0, 0) if average_brightness > 127 else (255, 255, 255)
|
190 |
+
|
191 |
+
# Create a new image with the same size as the original, filled with the background color
|
192 |
+
new_image = Image.new('RGB', image.size, bg_color)
|
193 |
+
|
194 |
+
# Paste the original image on top of the background (use image as a mask if needed)
|
195 |
+
new_image.paste(image, (0, 0), image if image.mode == 'RGBA' else None)
|
196 |
+
|
197 |
+
# Now you can pass the new_image to Molmo
|
198 |
+
processor = AutoProcessor.from_pretrained(
|
199 |
+
'allenai/Molmo-7B-D-0924',
|
200 |
+
trust_remote_code=True,
|
201 |
+
torch_dtype='auto',
|
202 |
+
device_map='auto'
|
203 |
+
)
|
204 |
+
```
|
205 |
+
|
206 |
+
## License and Use
|
207 |
+
|
208 |
+
This model is licensed under Apache 2.0. It is intended for research and educational use.
|
209 |
+
For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).
|
210 |
+
The base model used is Qwen2-72B, whose license (the Tongyi Qianwen license) you can find [here](https://huggingface.co/Qwen/Qwen2-72B/blob/main/LICENSE).
|
added_tokens.json
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<im_col>": 152067,
|
3 |
+
"<im_end>": 152065,
|
4 |
+
"<im_patch>": 152066,
|
5 |
+
"<im_start>": 152064,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|im_end|>": 151645,
|
8 |
+
"<|im_start|>": 151644,
|
9 |
+
"<|image|>": 152068,
|
10 |
+
"|<EXTRA_TOKENS_0>|": 151646,
|
11 |
+
"|<EXTRA_TOKENS_100>|": 151746,
|
12 |
+
"|<EXTRA_TOKENS_101>|": 151747,
|
13 |
+
"|<EXTRA_TOKENS_102>|": 151748,
|
14 |
+
"|<EXTRA_TOKENS_103>|": 151749,
|
15 |
+
"|<EXTRA_TOKENS_104>|": 151750,
|
16 |
+
"|<EXTRA_TOKENS_105>|": 151751,
|
17 |
+
"|<EXTRA_TOKENS_106>|": 151752,
|
18 |
+
"|<EXTRA_TOKENS_107>|": 151753,
|
19 |
+
"|<EXTRA_TOKENS_108>|": 151754,
|
20 |
+
"|<EXTRA_TOKENS_109>|": 151755,
|
21 |
+
"|<EXTRA_TOKENS_10>|": 151656,
|
22 |
+
"|<EXTRA_TOKENS_110>|": 151756,
|
23 |
+
"|<EXTRA_TOKENS_111>|": 151757,
|
24 |
+
"|<EXTRA_TOKENS_112>|": 151758,
|
25 |
+
"|<EXTRA_TOKENS_113>|": 151759,
|
26 |
+
"|<EXTRA_TOKENS_114>|": 151760,
|
27 |
+
"|<EXTRA_TOKENS_115>|": 151761,
|
28 |
+
"|<EXTRA_TOKENS_116>|": 151762,
|
29 |
+
"|<EXTRA_TOKENS_117>|": 151763,
|
30 |
+
"|<EXTRA_TOKENS_118>|": 151764,
|
31 |
+
"|<EXTRA_TOKENS_119>|": 151765,
|
32 |
+
"|<EXTRA_TOKENS_11>|": 151657,
|
33 |
+
"|<EXTRA_TOKENS_120>|": 151766,
|
34 |
+
"|<EXTRA_TOKENS_121>|": 151767,
|
35 |
+
"|<EXTRA_TOKENS_122>|": 151768,
|
36 |
+
"|<EXTRA_TOKENS_123>|": 151769,
|
37 |
+
"|<EXTRA_TOKENS_124>|": 151770,
|
38 |
+
"|<EXTRA_TOKENS_125>|": 151771,
|
39 |
+
"|<EXTRA_TOKENS_126>|": 151772,
|
40 |
+
"|<EXTRA_TOKENS_127>|": 151773,
|
41 |
+
"|<EXTRA_TOKENS_128>|": 151774,
|
42 |
+
"|<EXTRA_TOKENS_129>|": 151775,
|
43 |
+
"|<EXTRA_TOKENS_12>|": 151658,
|
44 |
+
"|<EXTRA_TOKENS_130>|": 151776,
|
45 |
+
"|<EXTRA_TOKENS_131>|": 151777,
|
46 |
+
"|<EXTRA_TOKENS_132>|": 151778,
|
47 |
+
"|<EXTRA_TOKENS_133>|": 151779,
|
48 |
+
"|<EXTRA_TOKENS_134>|": 151780,
|
49 |
+
"|<EXTRA_TOKENS_135>|": 151781,
|
50 |
+
"|<EXTRA_TOKENS_136>|": 151782,
|
51 |
+
"|<EXTRA_TOKENS_137>|": 151783,
|
52 |
+
"|<EXTRA_TOKENS_138>|": 151784,
|
53 |
+
"|<EXTRA_TOKENS_139>|": 151785,
|
54 |
+
"|<EXTRA_TOKENS_13>|": 151659,
|
55 |
+
"|<EXTRA_TOKENS_140>|": 151786,
|
56 |
+
"|<EXTRA_TOKENS_141>|": 151787,
|
57 |
+
"|<EXTRA_TOKENS_142>|": 151788,
|
58 |
+
"|<EXTRA_TOKENS_143>|": 151789,
|
59 |
+
"|<EXTRA_TOKENS_144>|": 151790,
|
60 |
+
"|<EXTRA_TOKENS_145>|": 151791,
|
61 |
+
"|<EXTRA_TOKENS_146>|": 151792,
|
62 |
+
"|<EXTRA_TOKENS_147>|": 151793,
|
63 |
+
"|<EXTRA_TOKENS_148>|": 151794,
|
64 |
+
"|<EXTRA_TOKENS_149>|": 151795,
|
65 |
+
"|<EXTRA_TOKENS_14>|": 151660,
|
66 |
+
"|<EXTRA_TOKENS_150>|": 151796,
|
67 |
+
"|<EXTRA_TOKENS_151>|": 151797,
|
68 |
+
"|<EXTRA_TOKENS_152>|": 151798,
|
69 |
+
"|<EXTRA_TOKENS_153>|": 151799,
|
70 |
+
"|<EXTRA_TOKENS_154>|": 151800,
|
71 |
+
"|<EXTRA_TOKENS_155>|": 151801,
|
72 |
+
"|<EXTRA_TOKENS_156>|": 151802,
|
73 |
+
"|<EXTRA_TOKENS_157>|": 151803,
|
74 |
+
"|<EXTRA_TOKENS_158>|": 151804,
|
75 |
+
"|<EXTRA_TOKENS_159>|": 151805,
|
76 |
+
"|<EXTRA_TOKENS_15>|": 151661,
|
77 |
+
"|<EXTRA_TOKENS_160>|": 151806,
|
78 |
+
"|<EXTRA_TOKENS_161>|": 151807,
|
79 |
+
"|<EXTRA_TOKENS_162>|": 151808,
|
80 |
+
"|<EXTRA_TOKENS_163>|": 151809,
|
81 |
+
"|<EXTRA_TOKENS_164>|": 151810,
|
82 |
+
"|<EXTRA_TOKENS_165>|": 151811,
|
83 |
+
"|<EXTRA_TOKENS_166>|": 151812,
|
84 |
+
"|<EXTRA_TOKENS_167>|": 151813,
|
85 |
+
"|<EXTRA_TOKENS_168>|": 151814,
|
86 |
+
"|<EXTRA_TOKENS_169>|": 151815,
|
87 |
+
"|<EXTRA_TOKENS_16>|": 151662,
|
88 |
+
"|<EXTRA_TOKENS_170>|": 151816,
|
89 |
+
"|<EXTRA_TOKENS_171>|": 151817,
|
90 |
+
"|<EXTRA_TOKENS_172>|": 151818,
|
91 |
+
"|<EXTRA_TOKENS_173>|": 151819,
|
92 |
+
"|<EXTRA_TOKENS_174>|": 151820,
|
93 |
+
"|<EXTRA_TOKENS_175>|": 151821,
|
94 |
+
"|<EXTRA_TOKENS_176>|": 151822,
|
95 |
+
"|<EXTRA_TOKENS_177>|": 151823,
|
96 |
+
"|<EXTRA_TOKENS_178>|": 151824,
|
97 |
+
"|<EXTRA_TOKENS_179>|": 151825,
|
98 |
+
"|<EXTRA_TOKENS_17>|": 151663,
|
99 |
+
"|<EXTRA_TOKENS_180>|": 151826,
|
100 |
+
"|<EXTRA_TOKENS_181>|": 151827,
|
101 |
+
"|<EXTRA_TOKENS_182>|": 151828,
|
102 |
+
"|<EXTRA_TOKENS_183>|": 151829,
|
103 |
+
"|<EXTRA_TOKENS_184>|": 151830,
|
104 |
+
"|<EXTRA_TOKENS_185>|": 151831,
|
105 |
+
"|<EXTRA_TOKENS_186>|": 151832,
|
106 |
+
"|<EXTRA_TOKENS_187>|": 151833,
|
107 |
+
"|<EXTRA_TOKENS_188>|": 151834,
|
108 |
+
"|<EXTRA_TOKENS_189>|": 151835,
|
109 |
+
"|<EXTRA_TOKENS_18>|": 151664,
|
110 |
+
"|<EXTRA_TOKENS_190>|": 151836,
|
111 |
+
"|<EXTRA_TOKENS_191>|": 151837,
|
112 |
+
"|<EXTRA_TOKENS_192>|": 151838,
|
113 |
+
"|<EXTRA_TOKENS_193>|": 151839,
|
114 |
+
"|<EXTRA_TOKENS_194>|": 151840,
|
115 |
+
"|<EXTRA_TOKENS_195>|": 151841,
|
116 |
+
"|<EXTRA_TOKENS_196>|": 151842,
|
117 |
+
"|<EXTRA_TOKENS_197>|": 151843,
|
118 |
+
"|<EXTRA_TOKENS_198>|": 151844,
|
119 |
+
"|<EXTRA_TOKENS_199>|": 151845,
|
120 |
+
"|<EXTRA_TOKENS_19>|": 151665,
|
121 |
+
"|<EXTRA_TOKENS_1>|": 151647,
|
122 |
+
"|<EXTRA_TOKENS_200>|": 151846,
|
123 |
+
"|<EXTRA_TOKENS_201>|": 151847,
|
124 |
+
"|<EXTRA_TOKENS_202>|": 151848,
|
125 |
+
"|<EXTRA_TOKENS_203>|": 151849,
|
126 |
+
"|<EXTRA_TOKENS_204>|": 151850,
|
127 |
+
"|<EXTRA_TOKENS_205>|": 151851,
|
128 |
+
"|<EXTRA_TOKENS_206>|": 151852,
|
129 |
+
"|<EXTRA_TOKENS_207>|": 151853,
|
130 |
+
"|<EXTRA_TOKENS_208>|": 151854,
|
131 |
+
"|<EXTRA_TOKENS_209>|": 151855,
|
132 |
+
"|<EXTRA_TOKENS_20>|": 151666,
|
133 |
+
"|<EXTRA_TOKENS_210>|": 151856,
|
134 |
+
"|<EXTRA_TOKENS_211>|": 151857,
|
135 |
+
"|<EXTRA_TOKENS_212>|": 151858,
|
136 |
+
"|<EXTRA_TOKENS_213>|": 151859,
|
137 |
+
"|<EXTRA_TOKENS_214>|": 151860,
|
138 |
+
"|<EXTRA_TOKENS_215>|": 151861,
|
139 |
+
"|<EXTRA_TOKENS_216>|": 151862,
|
140 |
+
"|<EXTRA_TOKENS_217>|": 151863,
|
141 |
+
"|<EXTRA_TOKENS_218>|": 151864,
|
142 |
+
"|<EXTRA_TOKENS_219>|": 151865,
|
143 |
+
"|<EXTRA_TOKENS_21>|": 151667,
|
144 |
+
"|<EXTRA_TOKENS_220>|": 151866,
|
145 |
+
"|<EXTRA_TOKENS_221>|": 151867,
|
146 |
+
"|<EXTRA_TOKENS_222>|": 151868,
|
147 |
+
"|<EXTRA_TOKENS_223>|": 151869,
|
148 |
+
"|<EXTRA_TOKENS_224>|": 151870,
|
149 |
+
"|<EXTRA_TOKENS_225>|": 151871,
|
150 |
+
"|<EXTRA_TOKENS_226>|": 151872,
|
151 |
+
"|<EXTRA_TOKENS_227>|": 151873,
|
152 |
+
"|<EXTRA_TOKENS_228>|": 151874,
|
153 |
+
"|<EXTRA_TOKENS_229>|": 151875,
|
154 |
+
"|<EXTRA_TOKENS_22>|": 151668,
|
155 |
+
"|<EXTRA_TOKENS_230>|": 151876,
|
156 |
+
"|<EXTRA_TOKENS_231>|": 151877,
|
157 |
+
"|<EXTRA_TOKENS_232>|": 151878,
|
158 |
+
"|<EXTRA_TOKENS_233>|": 151879,
|
159 |
+
"|<EXTRA_TOKENS_234>|": 151880,
|
160 |
+
"|<EXTRA_TOKENS_235>|": 151881,
|
161 |
+
"|<EXTRA_TOKENS_236>|": 151882,
|
162 |
+
"|<EXTRA_TOKENS_237>|": 151883,
|
163 |
+
"|<EXTRA_TOKENS_238>|": 151884,
|
164 |
+
"|<EXTRA_TOKENS_239>|": 151885,
|
165 |
+
"|<EXTRA_TOKENS_23>|": 151669,
|
166 |
+
"|<EXTRA_TOKENS_240>|": 151886,
|
167 |
+
"|<EXTRA_TOKENS_241>|": 151887,
|
168 |
+
"|<EXTRA_TOKENS_242>|": 151888,
|
169 |
+
"|<EXTRA_TOKENS_243>|": 151889,
|
170 |
+
"|<EXTRA_TOKENS_244>|": 151890,
|
171 |
+
"|<EXTRA_TOKENS_245>|": 151891,
|
172 |
+
"|<EXTRA_TOKENS_246>|": 151892,
|
173 |
+
"|<EXTRA_TOKENS_247>|": 151893,
|
174 |
+
"|<EXTRA_TOKENS_248>|": 151894,
|
175 |
+
"|<EXTRA_TOKENS_249>|": 151895,
|
176 |
+
"|<EXTRA_TOKENS_24>|": 151670,
|
177 |
+
"|<EXTRA_TOKENS_250>|": 151896,
|
178 |
+
"|<EXTRA_TOKENS_251>|": 151897,
|
179 |
+
"|<EXTRA_TOKENS_252>|": 151898,
|
180 |
+
"|<EXTRA_TOKENS_253>|": 151899,
|
181 |
+
"|<EXTRA_TOKENS_254>|": 151900,
|
182 |
+
"|<EXTRA_TOKENS_255>|": 151901,
|
183 |
+
"|<EXTRA_TOKENS_256>|": 151902,
|
184 |
+
"|<EXTRA_TOKENS_257>|": 151903,
|
185 |
+
"|<EXTRA_TOKENS_258>|": 151904,
|
186 |
+
"|<EXTRA_TOKENS_259>|": 151905,
|
187 |
+
"|<EXTRA_TOKENS_25>|": 151671,
|
188 |
+
"|<EXTRA_TOKENS_260>|": 151906,
|
189 |
+
"|<EXTRA_TOKENS_261>|": 151907,
|
190 |
+
"|<EXTRA_TOKENS_262>|": 151908,
|
191 |
+
"|<EXTRA_TOKENS_263>|": 151909,
|
192 |
+
"|<EXTRA_TOKENS_264>|": 151910,
|
193 |
+
"|<EXTRA_TOKENS_265>|": 151911,
|
194 |
+
"|<EXTRA_TOKENS_266>|": 151912,
|
195 |
+
"|<EXTRA_TOKENS_267>|": 151913,
|
196 |
+
"|<EXTRA_TOKENS_268>|": 151914,
|
197 |
+
"|<EXTRA_TOKENS_269>|": 151915,
|
198 |
+
"|<EXTRA_TOKENS_26>|": 151672,
|
199 |
+
"|<EXTRA_TOKENS_270>|": 151916,
|
200 |
+
"|<EXTRA_TOKENS_271>|": 151917,
|
201 |
+
"|<EXTRA_TOKENS_272>|": 151918,
|
202 |
+
"|<EXTRA_TOKENS_273>|": 151919,
|
203 |
+
"|<EXTRA_TOKENS_274>|": 151920,
|
204 |
+
"|<EXTRA_TOKENS_275>|": 151921,
|
205 |
+
"|<EXTRA_TOKENS_276>|": 151922,
|
206 |
+
"|<EXTRA_TOKENS_277>|": 151923,
|
207 |
+
"|<EXTRA_TOKENS_278>|": 151924,
|
208 |
+
"|<EXTRA_TOKENS_279>|": 151925,
|
209 |
+
"|<EXTRA_TOKENS_27>|": 151673,
|
210 |
+
"|<EXTRA_TOKENS_280>|": 151926,
|
211 |
+
"|<EXTRA_TOKENS_281>|": 151927,
|
212 |
+
"|<EXTRA_TOKENS_282>|": 151928,
|
213 |
+
"|<EXTRA_TOKENS_283>|": 151929,
|
214 |
+
"|<EXTRA_TOKENS_284>|": 151930,
|
215 |
+
"|<EXTRA_TOKENS_285>|": 151931,
|
216 |
+
"|<EXTRA_TOKENS_286>|": 151932,
|
217 |
+
"|<EXTRA_TOKENS_287>|": 151933,
|
218 |
+
"|<EXTRA_TOKENS_288>|": 151934,
|
219 |
+
"|<EXTRA_TOKENS_289>|": 151935,
|
220 |
+
"|<EXTRA_TOKENS_28>|": 151674,
|
221 |
+
"|<EXTRA_TOKENS_290>|": 151936,
|
222 |
+
"|<EXTRA_TOKENS_291>|": 151937,
|
223 |
+
"|<EXTRA_TOKENS_292>|": 151938,
|
224 |
+
"|<EXTRA_TOKENS_293>|": 151939,
|
225 |
+
"|<EXTRA_TOKENS_294>|": 151940,
|
226 |
+
"|<EXTRA_TOKENS_295>|": 151941,
|
227 |
+
"|<EXTRA_TOKENS_296>|": 151942,
|
228 |
+
"|<EXTRA_TOKENS_297>|": 151943,
|
229 |
+
"|<EXTRA_TOKENS_298>|": 151944,
|
230 |
+
"|<EXTRA_TOKENS_299>|": 151945,
|
231 |
+
"|<EXTRA_TOKENS_29>|": 151675,
|
232 |
+
"|<EXTRA_TOKENS_2>|": 151648,
|
233 |
+
"|<EXTRA_TOKENS_300>|": 151946,
|
234 |
+
"|<EXTRA_TOKENS_301>|": 151947,
|
235 |
+
"|<EXTRA_TOKENS_302>|": 151948,
|
236 |
+
"|<EXTRA_TOKENS_303>|": 151949,
|
237 |
+
"|<EXTRA_TOKENS_304>|": 151950,
|
238 |
+
"|<EXTRA_TOKENS_305>|": 151951,
|
239 |
+
"|<EXTRA_TOKENS_306>|": 151952,
|
240 |
+
"|<EXTRA_TOKENS_307>|": 151953,
|
241 |
+
"|<EXTRA_TOKENS_308>|": 151954,
|
242 |
+
"|<EXTRA_TOKENS_309>|": 151955,
|
243 |
+
"|<EXTRA_TOKENS_30>|": 151676,
|
244 |
+
"|<EXTRA_TOKENS_310>|": 151956,
|
245 |
+
"|<EXTRA_TOKENS_311>|": 151957,
|
246 |
+
"|<EXTRA_TOKENS_312>|": 151958,
|
247 |
+
"|<EXTRA_TOKENS_313>|": 151959,
|
248 |
+
"|<EXTRA_TOKENS_314>|": 151960,
|
249 |
+
"|<EXTRA_TOKENS_315>|": 151961,
|
250 |
+
"|<EXTRA_TOKENS_316>|": 151962,
|
251 |
+
"|<EXTRA_TOKENS_317>|": 151963,
|
252 |
+
"|<EXTRA_TOKENS_318>|": 151964,
|
253 |
+
"|<EXTRA_TOKENS_319>|": 151965,
|
254 |
+
"|<EXTRA_TOKENS_31>|": 151677,
|
255 |
+
"|<EXTRA_TOKENS_320>|": 151966,
|
256 |
+
"|<EXTRA_TOKENS_321>|": 151967,
|
257 |
+
"|<EXTRA_TOKENS_322>|": 151968,
|
258 |
+
"|<EXTRA_TOKENS_323>|": 151969,
|
259 |
+
"|<EXTRA_TOKENS_324>|": 151970,
|
260 |
+
"|<EXTRA_TOKENS_325>|": 151971,
|
261 |
+
"|<EXTRA_TOKENS_326>|": 151972,
|
262 |
+
"|<EXTRA_TOKENS_327>|": 151973,
|
263 |
+
"|<EXTRA_TOKENS_328>|": 151974,
|
264 |
+
"|<EXTRA_TOKENS_329>|": 151975,
|
265 |
+
"|<EXTRA_TOKENS_32>|": 151678,
|
266 |
+
"|<EXTRA_TOKENS_330>|": 151976,
|
267 |
+
"|<EXTRA_TOKENS_331>|": 151977,
|
268 |
+
"|<EXTRA_TOKENS_332>|": 151978,
|
269 |
+
"|<EXTRA_TOKENS_333>|": 151979,
|
270 |
+
"|<EXTRA_TOKENS_334>|": 151980,
|
271 |
+
"|<EXTRA_TOKENS_335>|": 151981,
|
272 |
+
"|<EXTRA_TOKENS_336>|": 151982,
|
273 |
+
"|<EXTRA_TOKENS_337>|": 151983,
|
274 |
+
"|<EXTRA_TOKENS_338>|": 151984,
|
275 |
+
"|<EXTRA_TOKENS_339>|": 151985,
|
276 |
+
"|<EXTRA_TOKENS_33>|": 151679,
|
277 |
+
"|<EXTRA_TOKENS_340>|": 151986,
|
278 |
+
"|<EXTRA_TOKENS_341>|": 151987,
|
279 |
+
"|<EXTRA_TOKENS_342>|": 151988,
|
280 |
+
"|<EXTRA_TOKENS_343>|": 151989,
|
281 |
+
"|<EXTRA_TOKENS_344>|": 151990,
|
282 |
+
"|<EXTRA_TOKENS_345>|": 151991,
|
283 |
+
"|<EXTRA_TOKENS_346>|": 151992,
|
284 |
+
"|<EXTRA_TOKENS_347>|": 151993,
|
285 |
+
"|<EXTRA_TOKENS_348>|": 151994,
|
286 |
+
"|<EXTRA_TOKENS_349>|": 151995,
|
287 |
+
"|<EXTRA_TOKENS_34>|": 151680,
|
288 |
+
"|<EXTRA_TOKENS_350>|": 151996,
|
289 |
+
"|<EXTRA_TOKENS_351>|": 151997,
|
290 |
+
"|<EXTRA_TOKENS_352>|": 151998,
|
291 |
+
"|<EXTRA_TOKENS_353>|": 151999,
|
292 |
+
"|<EXTRA_TOKENS_354>|": 152000,
|
293 |
+
"|<EXTRA_TOKENS_355>|": 152001,
|
294 |
+
"|<EXTRA_TOKENS_356>|": 152002,
|
295 |
+
"|<EXTRA_TOKENS_357>|": 152003,
|
296 |
+
"|<EXTRA_TOKENS_358>|": 152004,
|
297 |
+
"|<EXTRA_TOKENS_359>|": 152005,
|
298 |
+
"|<EXTRA_TOKENS_35>|": 151681,
|
299 |
+
"|<EXTRA_TOKENS_360>|": 152006,
|
300 |
+
"|<EXTRA_TOKENS_361>|": 152007,
|
301 |
+
"|<EXTRA_TOKENS_362>|": 152008,
|
302 |
+
"|<EXTRA_TOKENS_363>|": 152009,
|
303 |
+
"|<EXTRA_TOKENS_364>|": 152010,
|
304 |
+
"|<EXTRA_TOKENS_365>|": 152011,
|
305 |
+
"|<EXTRA_TOKENS_366>|": 152012,
|
306 |
+
"|<EXTRA_TOKENS_367>|": 152013,
|
307 |
+
"|<EXTRA_TOKENS_368>|": 152014,
|
308 |
+
"|<EXTRA_TOKENS_369>|": 152015,
|
309 |
+
"|<EXTRA_TOKENS_36>|": 151682,
|
310 |
+
"|<EXTRA_TOKENS_370>|": 152016,
|
311 |
+
"|<EXTRA_TOKENS_371>|": 152017,
|
312 |
+
"|<EXTRA_TOKENS_372>|": 152018,
|
313 |
+
"|<EXTRA_TOKENS_373>|": 152019,
|
314 |
+
"|<EXTRA_TOKENS_374>|": 152020,
|
315 |
+
"|<EXTRA_TOKENS_375>|": 152021,
|
316 |
+
"|<EXTRA_TOKENS_376>|": 152022,
|
317 |
+
"|<EXTRA_TOKENS_377>|": 152023,
|
318 |
+
"|<EXTRA_TOKENS_378>|": 152024,
|
319 |
+
"|<EXTRA_TOKENS_379>|": 152025,
|
320 |
+
"|<EXTRA_TOKENS_37>|": 151683,
|
321 |
+
"|<EXTRA_TOKENS_380>|": 152026,
|
322 |
+
"|<EXTRA_TOKENS_381>|": 152027,
|
323 |
+
"|<EXTRA_TOKENS_382>|": 152028,
|
324 |
+
"|<EXTRA_TOKENS_383>|": 152029,
|
325 |
+
"|<EXTRA_TOKENS_384>|": 152030,
|
326 |
+
"|<EXTRA_TOKENS_385>|": 152031,
|
327 |
+
"|<EXTRA_TOKENS_386>|": 152032,
|
328 |
+
"|<EXTRA_TOKENS_387>|": 152033,
|
329 |
+
"|<EXTRA_TOKENS_388>|": 152034,
|
330 |
+
"|<EXTRA_TOKENS_389>|": 152035,
|
331 |
+
"|<EXTRA_TOKENS_38>|": 151684,
|
332 |
+
"|<EXTRA_TOKENS_390>|": 152036,
|
333 |
+
"|<EXTRA_TOKENS_391>|": 152037,
|
334 |
+
"|<EXTRA_TOKENS_392>|": 152038,
|
335 |
+
"|<EXTRA_TOKENS_393>|": 152039,
|
336 |
+
"|<EXTRA_TOKENS_394>|": 152040,
|
337 |
+
"|<EXTRA_TOKENS_395>|": 152041,
|
338 |
+
"|<EXTRA_TOKENS_396>|": 152042,
|
339 |
+
"|<EXTRA_TOKENS_397>|": 152043,
|
340 |
+
"|<EXTRA_TOKENS_398>|": 152044,
|
341 |
+
"|<EXTRA_TOKENS_399>|": 152045,
|
342 |
+
"|<EXTRA_TOKENS_39>|": 151685,
|
343 |
+
"|<EXTRA_TOKENS_3>|": 151649,
|
344 |
+
"|<EXTRA_TOKENS_400>|": 152046,
|
345 |
+
"|<EXTRA_TOKENS_401>|": 152047,
|
346 |
+
"|<EXTRA_TOKENS_402>|": 152048,
|
347 |
+
"|<EXTRA_TOKENS_403>|": 152049,
|
348 |
+
"|<EXTRA_TOKENS_404>|": 152050,
|
349 |
+
"|<EXTRA_TOKENS_405>|": 152051,
|
350 |
+
"|<EXTRA_TOKENS_406>|": 152052,
|
351 |
+
"|<EXTRA_TOKENS_407>|": 152053,
|
352 |
+
"|<EXTRA_TOKENS_408>|": 152054,
|
353 |
+
"|<EXTRA_TOKENS_409>|": 152055,
|
354 |
+
"|<EXTRA_TOKENS_40>|": 151686,
|
355 |
+
"|<EXTRA_TOKENS_410>|": 152056,
|
356 |
+
"|<EXTRA_TOKENS_411>|": 152057,
|
357 |
+
"|<EXTRA_TOKENS_412>|": 152058,
|
358 |
+
"|<EXTRA_TOKENS_413>|": 152059,
|
359 |
+
"|<EXTRA_TOKENS_414>|": 152060,
|
360 |
+
"|<EXTRA_TOKENS_415>|": 152061,
|
361 |
+
"|<EXTRA_TOKENS_416>|": 152062,
|
362 |
+
"|<EXTRA_TOKENS_417>|": 152063,
|
363 |
+
"|<EXTRA_TOKENS_41>|": 151687,
|
364 |
+
"|<EXTRA_TOKENS_42>|": 151688,
|
365 |
+
"|<EXTRA_TOKENS_43>|": 151689,
|
366 |
+
"|<EXTRA_TOKENS_44>|": 151690,
|
367 |
+
"|<EXTRA_TOKENS_45>|": 151691,
|
368 |
+
"|<EXTRA_TOKENS_46>|": 151692,
|
369 |
+
"|<EXTRA_TOKENS_47>|": 151693,
|
370 |
+
"|<EXTRA_TOKENS_48>|": 151694,
|
371 |
+
"|<EXTRA_TOKENS_49>|": 151695,
|
372 |
+
"|<EXTRA_TOKENS_4>|": 151650,
|
373 |
+
"|<EXTRA_TOKENS_50>|": 151696,
|
374 |
+
"|<EXTRA_TOKENS_51>|": 151697,
|
375 |
+
"|<EXTRA_TOKENS_52>|": 151698,
|
376 |
+
"|<EXTRA_TOKENS_53>|": 151699,
|
377 |
+
"|<EXTRA_TOKENS_54>|": 151700,
|
378 |
+
"|<EXTRA_TOKENS_55>|": 151701,
|
379 |
+
"|<EXTRA_TOKENS_56>|": 151702,
|
380 |
+
"|<EXTRA_TOKENS_57>|": 151703,
|
381 |
+
"|<EXTRA_TOKENS_58>|": 151704,
|
382 |
+
"|<EXTRA_TOKENS_59>|": 151705,
|
383 |
+
"|<EXTRA_TOKENS_5>|": 151651,
|
384 |
+
"|<EXTRA_TOKENS_60>|": 151706,
|
385 |
+
"|<EXTRA_TOKENS_61>|": 151707,
|
386 |
+
"|<EXTRA_TOKENS_62>|": 151708,
|
387 |
+
"|<EXTRA_TOKENS_63>|": 151709,
|
388 |
+
"|<EXTRA_TOKENS_64>|": 151710,
|
389 |
+
"|<EXTRA_TOKENS_65>|": 151711,
|
390 |
+
"|<EXTRA_TOKENS_66>|": 151712,
|
391 |
+
"|<EXTRA_TOKENS_67>|": 151713,
|
392 |
+
"|<EXTRA_TOKENS_68>|": 151714,
|
393 |
+
"|<EXTRA_TOKENS_69>|": 151715,
|
394 |
+
"|<EXTRA_TOKENS_6>|": 151652,
|
395 |
+
"|<EXTRA_TOKENS_70>|": 151716,
|
396 |
+
"|<EXTRA_TOKENS_71>|": 151717,
|
397 |
+
"|<EXTRA_TOKENS_72>|": 151718,
|
398 |
+
"|<EXTRA_TOKENS_73>|": 151719,
|
399 |
+
"|<EXTRA_TOKENS_74>|": 151720,
|
400 |
+
"|<EXTRA_TOKENS_75>|": 151721,
|
401 |
+
"|<EXTRA_TOKENS_76>|": 151722,
|
402 |
+
"|<EXTRA_TOKENS_77>|": 151723,
|
403 |
+
"|<EXTRA_TOKENS_78>|": 151724,
|
404 |
+
"|<EXTRA_TOKENS_79>|": 151725,
|
405 |
+
"|<EXTRA_TOKENS_7>|": 151653,
|
406 |
+
"|<EXTRA_TOKENS_80>|": 151726,
|
407 |
+
"|<EXTRA_TOKENS_81>|": 151727,
|
408 |
+
"|<EXTRA_TOKENS_82>|": 151728,
|
409 |
+
"|<EXTRA_TOKENS_83>|": 151729,
|
410 |
+
"|<EXTRA_TOKENS_84>|": 151730,
|
411 |
+
"|<EXTRA_TOKENS_85>|": 151731,
|
412 |
+
"|<EXTRA_TOKENS_86>|": 151732,
|
413 |
+
"|<EXTRA_TOKENS_87>|": 151733,
|
414 |
+
"|<EXTRA_TOKENS_88>|": 151734,
|
415 |
+
"|<EXTRA_TOKENS_89>|": 151735,
|
416 |
+
"|<EXTRA_TOKENS_8>|": 151654,
|
417 |
+
"|<EXTRA_TOKENS_90>|": 151736,
|
418 |
+
"|<EXTRA_TOKENS_91>|": 151737,
|
419 |
+
"|<EXTRA_TOKENS_92>|": 151738,
|
420 |
+
"|<EXTRA_TOKENS_93>|": 151739,
|
421 |
+
"|<EXTRA_TOKENS_94>|": 151740,
|
422 |
+
"|<EXTRA_TOKENS_95>|": 151741,
|
423 |
+
"|<EXTRA_TOKENS_96>|": 151742,
|
424 |
+
"|<EXTRA_TOKENS_97>|": 151743,
|
425 |
+
"|<EXTRA_TOKENS_98>|": 151744,
|
426 |
+
"|<EXTRA_TOKENS_99>|": 151745,
|
427 |
+
"|<EXTRA_TOKENS_9>|": 151655
|
428 |
+
}
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MolmoForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_layer_norm": false,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "config_molmo.MolmoConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_molmo.MolmoForCausalLM"
|
9 |
+
},
|
10 |
+
"clip_qkv": null,
|
11 |
+
"embedding_size": 152064,
|
12 |
+
"hidden_size": 8192,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 59136,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"layer_norm_type": "rms",
|
17 |
+
"max_position_embeddings": 4096,
|
18 |
+
"model_type": "molmo",
|
19 |
+
"norm_after": false,
|
20 |
+
"num_attention_heads": 64,
|
21 |
+
"num_hidden_layers": 80,
|
22 |
+
"num_key_value_heads": 8,
|
23 |
+
"qkv_bias": true,
|
24 |
+
"rope_theta": 1000000.0,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.43.3",
|
28 |
+
"use_cache": true,
|
29 |
+
"use_position_ids": true,
|
30 |
+
"vocab_size": 152064,
|
31 |
+
"weight_tying": false
|
32 |
+
}
|
config_molmo.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from transformers import PretrainedConfig, AutoTokenizer
|
4 |
+
|
5 |
+
|
6 |
+
class MolmoConfig(PretrainedConfig):
|
7 |
+
model_type = "molmo"
|
8 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
9 |
+
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
vocab_size=50304,
|
13 |
+
embedding_size=50304,
|
14 |
+
hidden_size=4096,
|
15 |
+
intermediate_size=11008,
|
16 |
+
num_hidden_layers=32,
|
17 |
+
num_attention_heads=32,
|
18 |
+
num_key_value_heads=None,
|
19 |
+
max_position_embeddings=2048,
|
20 |
+
initializer_range=0.02,
|
21 |
+
use_cache=True,
|
22 |
+
layer_norm_eps: float = 1e-5,
|
23 |
+
rope_theta=10000.0,
|
24 |
+
clip_qkv=None,
|
25 |
+
qkv_bias: bool = False,
|
26 |
+
weight_tying: bool = False,
|
27 |
+
use_position_ids: bool=True,
|
28 |
+
tie_word_embeddings: bool=True,
|
29 |
+
attention_layer_norm: bool=False,
|
30 |
+
norm_after: bool = False,
|
31 |
+
layer_norm_type: str="rms",
|
32 |
+
**kwargs,
|
33 |
+
):
|
34 |
+
self.vocab_size = vocab_size
|
35 |
+
self.embedding_size = embedding_size
|
36 |
+
self.max_position_embeddings = max_position_embeddings
|
37 |
+
self.hidden_size = hidden_size
|
38 |
+
self.intermediate_size = intermediate_size
|
39 |
+
self.num_hidden_layers = num_hidden_layers
|
40 |
+
self.num_attention_heads = num_attention_heads
|
41 |
+
self.layer_norm_eps = layer_norm_eps
|
42 |
+
self.weight_tying = weight_tying
|
43 |
+
self.use_position_ids = use_position_ids
|
44 |
+
self.attention_layer_norm = attention_layer_norm
|
45 |
+
self.num_key_value_heads = num_key_value_heads
|
46 |
+
self.initializer_range = initializer_range
|
47 |
+
self.use_cache = use_cache
|
48 |
+
self.rope_theta = rope_theta
|
49 |
+
self.clip_qkv = clip_qkv
|
50 |
+
self.qkv_bias = qkv_bias
|
51 |
+
self.norm_after = norm_after
|
52 |
+
self.tie_word_embeddings = tie_word_embeddings
|
53 |
+
self.layer_norm_type = layer_norm_type
|
54 |
+
|
55 |
+
super().__init__(
|
56 |
+
tie_word_embeddings=tie_word_embeddings,
|
57 |
+
**kwargs,
|
58 |
+
)
|
59 |
+
|
60 |
+
MolmoConfig.register_for_auto_class()
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.43.3"
|
4 |
+
}
|
image_preprocessing_molmo.py
ADDED
@@ -0,0 +1,546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Image processor class for Molmo"""
|
2 |
+
from typing import List, Optional, Union, Mapping
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import einops
|
6 |
+
import torch
|
7 |
+
import torchvision.transforms
|
8 |
+
from torchvision.transforms import InterpolationMode
|
9 |
+
from torchvision.transforms.functional import convert_image_dtype
|
10 |
+
|
11 |
+
from transformers.image_utils import (
|
12 |
+
OPENAI_CLIP_MEAN,
|
13 |
+
OPENAI_CLIP_STD,
|
14 |
+
ImageInput,
|
15 |
+
is_valid_image,
|
16 |
+
)
|
17 |
+
from transformers.processing_utils import ImagesKwargs
|
18 |
+
from transformers.image_processing_utils import BaseImageProcessor
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
def pad_to_bounding_box(
|
26 |
+
image, offset_height, offset_width, target_height,
|
27 |
+
target_width, value=0
|
28 |
+
):
|
29 |
+
height, width = image.shape[:2]
|
30 |
+
after_padding_width = target_width - offset_width - width
|
31 |
+
after_padding_height = target_height - offset_height - height
|
32 |
+
return np.pad(image, [
|
33 |
+
[offset_height, after_padding_height],
|
34 |
+
[offset_width, after_padding_width],
|
35 |
+
[0, 0]
|
36 |
+
], constant_values=value)
|
37 |
+
|
38 |
+
|
39 |
+
def normalize_image(image, offset, scale):
|
40 |
+
image -= np.array(offset, dtype=np.float32)[None, None, :]
|
41 |
+
image /= np.array(scale, dtype=np.float32)[None, None, :]
|
42 |
+
return image
|
43 |
+
|
44 |
+
|
45 |
+
def resize_and_pad(
|
46 |
+
image,
|
47 |
+
desired_output_size,
|
48 |
+
resize_method="torch-bilinear",
|
49 |
+
pad_value=0,
|
50 |
+
normalize=True,
|
51 |
+
image_mean=OPENAI_CLIP_MEAN,
|
52 |
+
image_std=OPENAI_CLIP_STD,
|
53 |
+
):
|
54 |
+
desired_height, desired_width = desired_output_size
|
55 |
+
height, width = image.shape[:2]
|
56 |
+
|
57 |
+
# Cast into float32 since the training code did this in float32 and it (very rarely) effects
|
58 |
+
# the results after rounding.
|
59 |
+
image_scale_y = np.array(desired_height, np.float32) / np.array(height, np.float32)
|
60 |
+
image_scale_x = np.array(desired_width, np.float32) / np.array(width, np.float32)
|
61 |
+
image_scale = min(image_scale_x, image_scale_y)
|
62 |
+
scaled_height = int(np.array(height, np.float32) * image_scale)
|
63 |
+
scaled_width = int(np.array(width, np.float32) * image_scale)
|
64 |
+
|
65 |
+
if resize_method == "tensorflow":
|
66 |
+
# This how the original training code did resizing, it can produce slightly different
|
67 |
+
# results then using torch resize so we keep it just in case
|
68 |
+
import tensorflow as tf
|
69 |
+
image = tf.image.convert_image_dtype(tf.constant(image), dtype=tf.float32)
|
70 |
+
image = tf.image.resize(
|
71 |
+
image,
|
72 |
+
[scaled_height, scaled_width],
|
73 |
+
method=tf.image.ResizeMethod.BILINEAR,
|
74 |
+
antialias=True,
|
75 |
+
)
|
76 |
+
image = tf.clip_by_value(image, 0.0, 1.0)
|
77 |
+
image = image.numpy()
|
78 |
+
elif resize_method == "torch-bilinear":
|
79 |
+
image = torch.permute(torch.from_numpy(image), [2, 0, 1])
|
80 |
+
image = convert_image_dtype(image) # resize in float32 to match the training code
|
81 |
+
image = torchvision.transforms.Resize(
|
82 |
+
[scaled_height, scaled_width], InterpolationMode.BILINEAR, antialias=True
|
83 |
+
)(image)
|
84 |
+
image = torch.clip(image, 0.0, 1.0)
|
85 |
+
image = torch.permute(image, [1, 2, 0]).numpy()
|
86 |
+
else:
|
87 |
+
raise NotImplementedError(resize_method)
|
88 |
+
|
89 |
+
top_pad = (desired_height - scaled_height) // 2
|
90 |
+
left_pad = (desired_width - scaled_width) // 2
|
91 |
+
padding = [
|
92 |
+
[top_pad, desired_height - scaled_height - top_pad],
|
93 |
+
[left_pad, desired_width - scaled_width - left_pad],
|
94 |
+
[0, 0]
|
95 |
+
]
|
96 |
+
image_mask = np.pad(np.ones_like(image[:, :, 0], dtype=bool), padding[:2])
|
97 |
+
image = np.pad(image, padding, constant_values=pad_value)
|
98 |
+
if normalize:
|
99 |
+
image = normalize_image(image, offset=image_mean, scale=image_std)
|
100 |
+
return image, image_mask
|
101 |
+
|
102 |
+
|
103 |
+
def select_tiling(h, w, patch_size, max_num_patches):
|
104 |
+
"""Decide how best to divide in image of size [w, h] in up to max_num_patches of size patch_size"""
|
105 |
+
original_size = np.stack([h, w]) # [1, 2]
|
106 |
+
original_res = h * w
|
107 |
+
tilings = []
|
108 |
+
for i in range(1, max_num_patches+1):
|
109 |
+
for j in range(1, max_num_patches+1):
|
110 |
+
if i*j <= max_num_patches:
|
111 |
+
tilings.append((i, j))
|
112 |
+
# sort so argmin and argmax favour smaller tilings in the event of a tie
|
113 |
+
tilings.sort(key=lambda x: (x[0]*x[1], x[0]))
|
114 |
+
candidate_tilings = np.array(tilings, dtype=np.int32) # [n_resolutions, 2]
|
115 |
+
candidate_resolutions = candidate_tilings * patch_size # [n_resolutions, 2]
|
116 |
+
|
117 |
+
# How much we would need to scale the image to fit exactly in each tiling
|
118 |
+
original_size = np.stack([h, w], dtype=np.float32) # [1, 2]
|
119 |
+
required_scale_d = candidate_resolutions.astype(np.float32) / original_size
|
120 |
+
required_scale = np.min(required_scale_d, axis=-1, keepdims=True) # [n_resolutions, 1]
|
121 |
+
if np.all(required_scale < 1):
|
122 |
+
# We are forced to downscale, so try to minimize the amount of downscaling
|
123 |
+
ix = np.argmax(required_scale)
|
124 |
+
else:
|
125 |
+
# Pick the resolution that required the least upscaling so that it most closely fits the image
|
126 |
+
required_scale = np.where(required_scale < 1.0, 10e9, required_scale)
|
127 |
+
ix = np.argmin(required_scale)
|
128 |
+
return candidate_tilings[ix]
|
129 |
+
|
130 |
+
|
131 |
+
class MolmoImagesKwargs(ImagesKwargs, total=False):
|
132 |
+
max_crops: Optional[int]
|
133 |
+
overlap_margins: Optional[List[int]]
|
134 |
+
base_image_input_size: Optional[List[int]]
|
135 |
+
image_token_length_w: Optional[int]
|
136 |
+
image_token_length_h: Optional[int]
|
137 |
+
image_patch_size: Optional[int]
|
138 |
+
image_padding_mask: Optional[bool]
|
139 |
+
|
140 |
+
|
141 |
+
class MolmoImageProcessor(BaseImageProcessor):
|
142 |
+
"""Preprocess images and multi-model inputs"""
|
143 |
+
|
144 |
+
def __init__(
|
145 |
+
self,
|
146 |
+
max_crops: int = 12,
|
147 |
+
overlap_margins: List[int] = (4, 4),
|
148 |
+
base_image_input_size: List[int] = (336, 336),
|
149 |
+
image_token_length_w: int = 12,
|
150 |
+
image_token_length_h: int = 12,
|
151 |
+
image_patch_size: int = 14,
|
152 |
+
image_padding_mask: bool = True,
|
153 |
+
do_normalize: bool = True,
|
154 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
155 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
156 |
+
**kwargs,
|
157 |
+
):
|
158 |
+
super().__init__(**kwargs)
|
159 |
+
self.max_crops = max_crops
|
160 |
+
self.overlap_margins = overlap_margins
|
161 |
+
self.base_image_input_size = base_image_input_size
|
162 |
+
self.image_token_length_w = image_token_length_w
|
163 |
+
self.image_token_length_h = image_token_length_h
|
164 |
+
self.image_patch_size = image_patch_size
|
165 |
+
self.image_padding_mask = image_padding_mask
|
166 |
+
self.do_normalize = do_normalize
|
167 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
168 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
169 |
+
|
170 |
+
def image_to_patches_and_tokens(
|
171 |
+
self,
|
172 |
+
image: ImageInput,
|
173 |
+
image_patch_token_id: int,
|
174 |
+
image_col_token_id: int,
|
175 |
+
image_start_token_id: int,
|
176 |
+
image_end_token_id: int,
|
177 |
+
max_crops: Optional[int] = None,
|
178 |
+
overlap_margins: Optional[List[int]] = None,
|
179 |
+
base_image_input_size: Optional[Union[int, List[int]]] = None,
|
180 |
+
image_token_length_w: Optional[int] = None,
|
181 |
+
image_token_length_h: Optional[int] = None,
|
182 |
+
image_patch_size: Optional[int] = None,
|
183 |
+
):
|
184 |
+
if isinstance(base_image_input_size, int):
|
185 |
+
base_image_input_size = (base_image_input_size, base_image_input_size)
|
186 |
+
|
187 |
+
base_image_input_d = image_patch_size
|
188 |
+
tokens_per_image = image_token_length_w * image_token_length_h
|
189 |
+
image_base_patch_w = base_image_input_size[1] // base_image_input_d
|
190 |
+
image_base_patch_h = base_image_input_size[0] // base_image_input_d
|
191 |
+
|
192 |
+
original_image_h, original_image_w = image.shape[:2]
|
193 |
+
crop_size = base_image_input_size[0]
|
194 |
+
|
195 |
+
# Discard this many patches from the (left/top, right/bottom) of crops
|
196 |
+
left_margin, right_margin = overlap_margins
|
197 |
+
# left_margin, right_margin = 2, 2
|
198 |
+
assert left_margin % 2 == 0 # Required for compatibility with 2x2 pooling
|
199 |
+
total_margin_pixels = base_image_input_d*(right_margin + left_margin) # pixels removed per dim
|
200 |
+
crop_patches = base_image_input_size[0] // base_image_input_d # patches per crop dim
|
201 |
+
crop_window_patches = crop_patches - (right_margin + left_margin) # usable patches
|
202 |
+
crop_window_size = crop_window_patches * base_image_input_d
|
203 |
+
tiling = select_tiling(
|
204 |
+
original_image_h - total_margin_pixels,
|
205 |
+
original_image_w - total_margin_pixels,
|
206 |
+
crop_window_size,
|
207 |
+
max_crops
|
208 |
+
)
|
209 |
+
src, img_mask = resize_and_pad(
|
210 |
+
image,
|
211 |
+
[tiling[0]*crop_window_size+total_margin_pixels, tiling[1]*crop_window_size+total_margin_pixels]
|
212 |
+
)
|
213 |
+
|
214 |
+
# Now we have to split the image into crops, while keeping track of how each patch in the
|
215 |
+
# each crop should be ordered in the global image, this require a lot of tricky booking
|
216 |
+
n_crops = tiling[0] * tiling[1]
|
217 |
+
patches_arr = []
|
218 |
+
mask_arr = []
|
219 |
+
patch_ordering_arr = []
|
220 |
+
|
221 |
+
# We assume 2x2 pooling, but can allow padding the right/bottom with extra
|
222 |
+
# patches if the number of patches per side is not even
|
223 |
+
assert (crop_patches+1)//2 == image_token_length_h
|
224 |
+
assert (crop_patches+1)//2 == image_token_length_w
|
225 |
+
on = 0
|
226 |
+
on_patch = 0
|
227 |
+
for i in range(tiling[0]):
|
228 |
+
y0 = i*crop_window_size
|
229 |
+
if i == 0:
|
230 |
+
crop_y0 = 0
|
231 |
+
else:
|
232 |
+
crop_y0 = left_margin // 2
|
233 |
+
|
234 |
+
crop_h = image_base_patch_h - (right_margin + left_margin)
|
235 |
+
if i == 0:
|
236 |
+
crop_h += left_margin
|
237 |
+
if i == (tiling[0]-1):
|
238 |
+
crop_h += right_margin
|
239 |
+
for j in range(tiling[1]):
|
240 |
+
x0 = j*crop_window_size
|
241 |
+
if j == 0:
|
242 |
+
crop_x0 = 0
|
243 |
+
else:
|
244 |
+
crop_x0 = left_margin // 2
|
245 |
+
|
246 |
+
crop_w = image_base_patch_w - (right_margin + left_margin)
|
247 |
+
if j == 0:
|
248 |
+
crop_w += left_margin
|
249 |
+
if j == (tiling[1]-1):
|
250 |
+
crop_w += right_margin
|
251 |
+
|
252 |
+
pooled_w = (crop_w + 1) // 2
|
253 |
+
pooled_h = (crop_h + 1) // 2
|
254 |
+
patch_ordering_arr.append(
|
255 |
+
pad_to_bounding_box(
|
256 |
+
np.reshape(np.arange(on, on+pooled_h*pooled_w, dtype=np.int32), (pooled_h, pooled_w, 1)),
|
257 |
+
crop_y0, crop_x0, image_token_length_h, image_token_length_w, value=-1
|
258 |
+
)[:, :, 0]
|
259 |
+
)
|
260 |
+
patches_arr.append(src[y0:y0+crop_size, x0:x0+crop_size])
|
261 |
+
mask_arr.append(img_mask[y0:y0+crop_size, x0:x0+crop_size])
|
262 |
+
|
263 |
+
on += pooled_h*pooled_w
|
264 |
+
on_patch += 1
|
265 |
+
patches = np.stack(patches_arr)
|
266 |
+
patch_ordering = np.stack(patch_ordering_arr)
|
267 |
+
img_mask = np.stack(mask_arr)
|
268 |
+
|
269 |
+
# Switch to [n_crops, n_patches, pixels_per_patch] format
|
270 |
+
image_layout_impatch_w, image_layout_impatch_h = tiling[0], tiling[1]
|
271 |
+
patches = einops.rearrange(
|
272 |
+
patches, 'p (h dh) (w dw) c -> p (h w) (dh dw c)',
|
273 |
+
dh=base_image_input_d,
|
274 |
+
dw=base_image_input_d,
|
275 |
+
h=image_base_patch_h,
|
276 |
+
w=image_base_patch_w
|
277 |
+
)
|
278 |
+
img_mask = einops.rearrange(
|
279 |
+
img_mask, 'p (h dh) (w dw) -> p (h w) (dh dw)',
|
280 |
+
dh=base_image_input_d,
|
281 |
+
dw=base_image_input_d,
|
282 |
+
h=image_base_patch_h,
|
283 |
+
w=image_base_patch_w
|
284 |
+
)
|
285 |
+
|
286 |
+
img_mask = img_mask.astype(np.float32).mean(axis=-1)
|
287 |
+
patch_ordering = np.reshape(patch_ordering, [-1])
|
288 |
+
valid = patch_ordering >= 0
|
289 |
+
|
290 |
+
# Transpose order, to get left-to-right order instead of crop-by-crop order
|
291 |
+
patch_ordering_rh = np.reshape(
|
292 |
+
patch_ordering,
|
293 |
+
[tiling[0], tiling[1], image_token_length_h, image_token_length_w]
|
294 |
+
)
|
295 |
+
patch_ordering_rh = np.transpose(patch_ordering_rh, [0, 2, 1, 3])
|
296 |
+
patch_ordering_rh = np.reshape(patch_ordering_rh, [-1])
|
297 |
+
|
298 |
+
# The transpose will screw up which patches are masked, project the
|
299 |
+
# new order into sparse structure of `patch_ordering` to fix this
|
300 |
+
patch_ordering[valid] = patch_ordering_rh[patch_ordering_rh >= 0]
|
301 |
+
|
302 |
+
# Now build the output tokens
|
303 |
+
h = tiling[0] * crop_window_patches + (right_margin+left_margin)
|
304 |
+
w = tiling[1] * crop_window_patches + (right_margin+left_margin)
|
305 |
+
per_row = np.full(
|
306 |
+
((w+1)//2,),
|
307 |
+
image_patch_token_id,
|
308 |
+
)
|
309 |
+
per_row = np.concatenate([per_row, [image_col_token_id]], 0)
|
310 |
+
|
311 |
+
joint = np.tile(per_row, [(h+1)//2])
|
312 |
+
joint = [
|
313 |
+
[image_start_token_id],
|
314 |
+
joint,
|
315 |
+
[image_end_token_id]
|
316 |
+
]
|
317 |
+
|
318 |
+
# Finally do the same for the global image
|
319 |
+
resized, _ = resize_and_pad(image, base_image_input_size)
|
320 |
+
resized = einops.rearrange(
|
321 |
+
resized, '(h dh) (w dw) c -> (h w) (dh dw c)',
|
322 |
+
dh=base_image_input_d,
|
323 |
+
dw=base_image_input_d,
|
324 |
+
h=image_base_patch_h,
|
325 |
+
w=image_base_patch_w
|
326 |
+
)
|
327 |
+
patches = np.concatenate([np.expand_dims(resized, 0), patches], 0)
|
328 |
+
|
329 |
+
# Global image goes first, so the order of patches in previous crops gets increased
|
330 |
+
patch_ordering = np.where(
|
331 |
+
patch_ordering >= 0,
|
332 |
+
patch_ordering + tokens_per_image,
|
333 |
+
-1
|
334 |
+
)
|
335 |
+
patch_ordering = np.concatenate([np.arange(0, tokens_per_image), patch_ordering], 0)
|
336 |
+
per_row = np.full(
|
337 |
+
(image_token_length_w,),
|
338 |
+
image_patch_token_id,
|
339 |
+
)
|
340 |
+
per_row = np.concatenate([per_row, [image_col_token_id]], 0)
|
341 |
+
extra_tokens = np.tile(per_row, [image_token_length_h])
|
342 |
+
joint = [
|
343 |
+
[image_start_token_id],
|
344 |
+
extra_tokens,
|
345 |
+
[image_end_token_id],
|
346 |
+
] + joint
|
347 |
+
|
348 |
+
joint = np.concatenate(joint, 0)
|
349 |
+
img_mask = np.pad(img_mask, [[0, 1], [0, 0]], constant_values=-1)
|
350 |
+
return patches, joint, patch_ordering, img_mask
|
351 |
+
|
352 |
+
def build_image_input_idx(
|
353 |
+
self,
|
354 |
+
image_tokens: np.ndarray,
|
355 |
+
patch_order: np.ndarray,
|
356 |
+
image_patch_token_id: int,
|
357 |
+
no_image: Optional[bool] = None,
|
358 |
+
image_token_length_w: Optional[int] = None,
|
359 |
+
image_token_length_h: Optional[int] = None,
|
360 |
+
):
|
361 |
+
"""Converts `patch_order` into a mapping of token_id -> patch_id"""
|
362 |
+
|
363 |
+
tokens_per_image = image_token_length_w * image_token_length_h
|
364 |
+
if no_image is not None and no_image:
|
365 |
+
return np.zeros((0, tokens_per_image), np.int32)
|
366 |
+
|
367 |
+
# Indices to insert the patches
|
368 |
+
image_input_idx = image_tokens == image_patch_token_id
|
369 |
+
image_input_idx = np.nonzero(image_input_idx)[0].astype(np.int32)
|
370 |
+
|
371 |
+
if patch_order is not None:
|
372 |
+
n_tokens = image_input_idx.shape[0]
|
373 |
+
patch_order = np.reshape(patch_order, [-1])
|
374 |
+
n_patches = patch_order.shape[0]
|
375 |
+
|
376 |
+
valid = patch_order >= 0
|
377 |
+
n_valid_patches = valid.sum()
|
378 |
+
assert len(image_input_idx) == n_valid_patches
|
379 |
+
|
380 |
+
sorted_patch_ixs = np.zeros([n_tokens], np.int32)
|
381 |
+
sorted_patch_ixs[patch_order[valid]] = np.arange(n_valid_patches, dtype=np.int32)
|
382 |
+
|
383 |
+
# Project the inverted mapping into same sparse structure
|
384 |
+
sorted_patch_ixs_ex = np.full(np.shape(patch_order), -1)
|
385 |
+
sorted_patch_ixs_ex[valid] = sorted_patch_ixs
|
386 |
+
|
387 |
+
# Do the gather and then re-masked outputs that were masked in `sorted_patch_ixs`
|
388 |
+
valid = (sorted_patch_ixs_ex >= 0).astype(np.int32)
|
389 |
+
image_input_idx = image_input_idx[sorted_patch_ixs_ex*valid]
|
390 |
+
image_input_idx = image_input_idx*valid - 100*(1 - valid)
|
391 |
+
image_input_idx = np.reshape(image_input_idx, [-1, tokens_per_image])
|
392 |
+
return image_input_idx
|
393 |
+
|
394 |
+
def preprocess(
|
395 |
+
self,
|
396 |
+
image: np.ndarray,
|
397 |
+
image_patch_token_id: int,
|
398 |
+
image_col_token_id: int,
|
399 |
+
image_start_token_id: int,
|
400 |
+
image_end_token_id: int,
|
401 |
+
max_crops: Optional[int] = None,
|
402 |
+
overlap_margins: Optional[List[int]] = None,
|
403 |
+
base_image_input_size: Optional[Union[int, List[int]]] = None,
|
404 |
+
image_token_length_w: Optional[int] = None,
|
405 |
+
image_token_length_h: Optional[int] = None,
|
406 |
+
image_patch_size: Optional[int] = None,
|
407 |
+
**kwargs,
|
408 |
+
):
|
409 |
+
"""Preprocesses an image
|
410 |
+
|
411 |
+
Returns:
|
412 |
+
crops: (n_crops, n_patches, patch_dim) individual crops, `n_crops` might
|
413 |
+
change between images but the other dimension are fixed
|
414 |
+
tokens: (n_tokens,) int32 tokens, pad tokens indicate where to insert the
|
415 |
+
patch features, might include other special tokens as well
|
416 |
+
image_idx: (n_crops, n_patches) index in `tokens` to put the patch features from the
|
417 |
+
crops after pooling, negative values indicates patches features to exclude
|
418 |
+
padding_mask: (n_crops, n_patches) what percent of each crop is padding, can be None
|
419 |
+
if the image mask is not being used.
|
420 |
+
"""
|
421 |
+
|
422 |
+
max_crops = max_crops or self.max_crops
|
423 |
+
overlap_margins = overlap_margins or self.overlap_margins
|
424 |
+
base_image_input_size = base_image_input_size or self.base_image_input_size
|
425 |
+
image_token_length_w = image_token_length_w or self.image_token_length_w
|
426 |
+
image_token_length_h = image_token_length_h or self.image_token_length_h
|
427 |
+
image_patch_size = image_patch_size or self.image_patch_size
|
428 |
+
|
429 |
+
crops, image_tokens, patch_ordering, img_mask = self.image_to_patches_and_tokens(
|
430 |
+
image,
|
431 |
+
image_patch_token_id,
|
432 |
+
image_col_token_id,
|
433 |
+
image_start_token_id,
|
434 |
+
image_end_token_id,
|
435 |
+
max_crops,
|
436 |
+
overlap_margins,
|
437 |
+
base_image_input_size,
|
438 |
+
image_token_length_w,
|
439 |
+
image_token_length_h,
|
440 |
+
image_patch_size,
|
441 |
+
)
|
442 |
+
patch_idx = self.build_image_input_idx(
|
443 |
+
image_tokens,
|
444 |
+
patch_ordering,
|
445 |
+
image_patch_token_id,
|
446 |
+
image_token_length_w=image_token_length_w,
|
447 |
+
image_token_length_h=image_token_length_h,
|
448 |
+
)
|
449 |
+
return crops, image_tokens, patch_idx, img_mask
|
450 |
+
|
451 |
+
def multimodal_preprocess(
|
452 |
+
self,
|
453 |
+
images: np.ndarray,
|
454 |
+
tokens: List[int],
|
455 |
+
image_idx: np.ndarray,
|
456 |
+
sequence_length: int,
|
457 |
+
image_patch_token_id: int,
|
458 |
+
image_col_token_id: int,
|
459 |
+
image_start_token_id: int,
|
460 |
+
image_end_token_id: int,
|
461 |
+
**kwargs,
|
462 |
+
):
|
463 |
+
"""Merge images and text tokens into multi-modal features for the model
|
464 |
+
|
465 |
+
:param images: images to use as input
|
466 |
+
:param tokens: input text tokens
|
467 |
+
:param image_idx: where to insert the images into `tokens`
|
468 |
+
:params image_patch_token_id: id to use of tokens that will contain image features
|
469 |
+
:params image_col_token_id: token id for image column special tokens
|
470 |
+
:params image_start_token_id: token id for image start special tokens
|
471 |
+
:params image_end_token_id: token id for image end special tokens
|
472 |
+
:params kwargs: override preprocessor default args
|
473 |
+
"""
|
474 |
+
max_total_crops = kwargs.get("max_crops") or self.max_crops
|
475 |
+
image_token_length_w = kwargs.get("image_token_length_w") or self.image_token_length_w
|
476 |
+
image_token_length_h = kwargs.get("image_token_length_h") or self.image_token_length_h
|
477 |
+
image_patch_size = kwargs.get("image_patch_size") or self.image_patch_size
|
478 |
+
base_image_input_size = kwargs.get("base_image_input_size") or self.base_image_input_size
|
479 |
+
image_num_patch = (
|
480 |
+
base_image_input_size[0] // image_patch_size,
|
481 |
+
base_image_input_size[1] // image_patch_size,
|
482 |
+
)
|
483 |
+
image_padding_mask = kwargs.get("image_padding_mask") or self.image_padding_mask
|
484 |
+
|
485 |
+
tokens_per_image = image_token_length_w * image_token_length_h
|
486 |
+
n_pixels = image_patch_size * image_patch_size * 3
|
487 |
+
n_patches = image_num_patch[0] * image_num_patch[1]
|
488 |
+
|
489 |
+
if images is None:
|
490 |
+
return {
|
491 |
+
"input_ids": tokens,
|
492 |
+
}
|
493 |
+
else:
|
494 |
+
n = len(images)
|
495 |
+
all_crops = []
|
496 |
+
all_image_idx = []
|
497 |
+
out_tokens = []
|
498 |
+
all_crop_masks = []
|
499 |
+
|
500 |
+
for ix in range(n):
|
501 |
+
token_ix = image_idx[ix]
|
502 |
+
crops, image_tokens, patch_idx, img_mask = self.preprocess(
|
503 |
+
images[ix],
|
504 |
+
image_patch_token_id,
|
505 |
+
image_col_token_id,
|
506 |
+
image_start_token_id,
|
507 |
+
image_end_token_id,
|
508 |
+
**kwargs,
|
509 |
+
)
|
510 |
+
|
511 |
+
if token_ix == -1: # -1 is an image inserted at the very start
|
512 |
+
start = 0
|
513 |
+
token_ix = 0
|
514 |
+
end = 0
|
515 |
+
else:
|
516 |
+
start = 0 if ix == 0 else image_idx[ix-1] + 1
|
517 |
+
end = token_ix + 1
|
518 |
+
|
519 |
+
all_image_idx.append(patch_idx + token_ix)
|
520 |
+
all_crops.append(crops)
|
521 |
+
out_tokens.append(tokens[start:token_ix])
|
522 |
+
out_tokens.append(image_tokens)
|
523 |
+
if ix == (n - 1):
|
524 |
+
out_tokens.append(tokens[end:])
|
525 |
+
if image_padding_mask:
|
526 |
+
all_crop_masks.append(img_mask)
|
527 |
+
|
528 |
+
input_ids = np.concatenate(out_tokens, 0)
|
529 |
+
images = np.concatenate(all_crops, 0)
|
530 |
+
image_input_idx = np.concatenate(all_image_idx, 0)
|
531 |
+
if image_padding_mask:
|
532 |
+
image_masks = np.concatenate(all_crop_masks, 0)
|
533 |
+
else:
|
534 |
+
image_masks = None
|
535 |
+
|
536 |
+
out = {
|
537 |
+
"input_ids": input_ids,
|
538 |
+
"images": images,
|
539 |
+
"image_input_idx": image_input_idx
|
540 |
+
}
|
541 |
+
if image_masks is not None:
|
542 |
+
out["image_masks"] = image_masks
|
543 |
+
return out
|
544 |
+
|
545 |
+
|
546 |
+
MolmoImageProcessor.register_for_auto_class()
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5027bfc3649b4bb4fb35e5be030dcfeb84f0d38880e56454d818092f4989e339
|
3 |
+
size 4987060576
|
model-00002-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1cc3aa5377ed4604299078f9106c228d7e08da1cb173b680274eee7cd440dae
|
3 |
+
size 4748125472
|
model-00003-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2e5c5b0cf708950900cddde59fa3b56b0f5f89cd307f96c7634a3d810652f5a
|
3 |
+
size 3846325304
|
model-00004-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:439ac00ade686bf9af4aac0c03d41da02e4c93a56769fe6ffa48472bf6c94368
|
3 |
+
size 3510739800
|
model-00005-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89861d9233c358a6db60efab583c77784ebdee4d4e30e860f3f55bcae4c9cdc2
|
3 |
+
size 3510739800
|
model-00006-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:494de8dd6ff50adeac7e92a53ab057e04c19748beee53601345731814b830240
|
3 |
+
size 3510739800
|
model-00007-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e196c810473673bc7ccc015970ae72a45a2ed43e364e691d40105bd088b1c240
|
3 |
+
size 3510739800
|
model-00008-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ef4081b8fbf67b7a5ec34ed9167e4cd8aa0950cb039300a1c9caf5adc56d2aa
|
3 |
+
size 3510739800
|
model-00009-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cbda5d6ff2afd461826b7feab07dbfea21cf8f8a9ce122c61ae73c5f51edaac
|
3 |
+
size 3510739800
|
model-00010-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0469e47cb78e5685fcd90d7ab8871311ea7c8eaadd3564fb7d0498db0eeb5090
|
3 |
+
size 3510739800
|
model-00011-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc0aea52fdc716d72e6ae9457a21788324eeb9581984409d4531ad4b26ea55e
|
3 |
+
size 3510739792
|
model-00012-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bda2bf30ef4903b8ca8cc03ed917a93ac25bc981496a583578328fd7f899e736
|
3 |
+
size 3510739808
|
model-00013-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bb1a0125fcc9ed788d9251a02867a9900d411643839fdff4a1cbdc5291545e1
|
3 |
+
size 3510739808
|
model-00014-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dfd129c7c4310b2dfa2586552b927b95eb28c5b8de84775a744a8be870f19dd
|
3 |
+
size 3510739808
|
model-00015-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0046b0763b8cf9cd100ee51fb8440a8b90174764e1e620e6dc44f8f1bb60956e
|
3 |
+
size 3510739808
|
model-00016-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca6205a2ba7dd0a0f4648f17ba83345a747ac00087308ff8994b5c408b8d42b9
|
3 |
+
size 3510739808
|
model-00017-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:476c85010940c0dcaf22b91b9e354deb44aea785e1c24d647fe8683682070762
|
3 |
+
size 3510739808
|
model-00018-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c50af8499746df17e7f67ceec754313fad39389de2fc0c2e7165f2f288a9c1e3
|
3 |
+
size 3510739808
|
model-00019-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:193de920a1d37b44c478bdef9b10bd2da721a1efa0550d530de05abe6e05ccbf
|
3 |
+
size 3510739808
|
model-00020-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a2448617f3927b8a4e75f9953c1dbd398e68282e662b4fe03cc3430dfcb14df
|
3 |
+
size 3510739808
|
model-00021-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81736cc90cfc2d5f96786eb864ba5c9499a54256209a2dbaab4bc53bba2ca8f7
|
3 |
+
size 3510739808
|
model-00022-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:121d0a02ee908944e8477f89b61972387224c6944e5ff8d0d89dca00fb15e4df
|
3 |
+
size 3510739808
|
model-00023-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba960e96b20901a97d8ab4dd63577c57b4115836f4faf46cfd9e9ef01186f7dd
|
3 |
+
size 3510739808
|
model-00024-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba41eb0b90b1f5ae7f72e88e32429bd2a3f8ff8073d99efbf2c048cf66b9ad78
|
3 |
+
size 3510739808
|
model-00025-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad847636f627f05d37ab7c96bf8b39b37da677d290ec758425e9f84aab2420ee
|
3 |
+
size 3510739808
|
model-00026-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:239e7422ffeea9561dabd94be05cbc99489219f556ccce468caa9fc601682fe9
|
3 |
+
size 3510739808
|
model-00027-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e85365a207fe405f7062b12389c8f26a0e9a9cb0be3bbb039b2ecdadb18cb00c
|
3 |
+
size 3510739808
|
model-00028-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ea35ccd0a85cf2e3ef4f28f355e8fabbf1a7ff20a5dd8437549803841758961
|
3 |
+
size 3510739808
|
model-00029-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e44a12e4589f4c20a4065fabad5c8fe3ddc0e373b640b4a869d17f595fbf6aee
|
3 |
+
size 3510739808
|
model-00030-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ac210af50eddf60604c7a8c793bcfcb3b26144c42231fd8485ccb1a3a6bf444
|
3 |
+
size 3510739808
|
model-00031-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8b61c5215ac70a00a50c0e3aa3a2efe635683a10cee509983b194cdd5434bb2
|
3 |
+
size 3510739808
|
model-00032-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64a3ff0e6a48b91a6c36de5568cec3975530377df14b275f463cd33e1f5f600e
|
3 |
+
size 3510739808
|
model-00033-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e0950d7c66ac9fe3fdbe5a6fbb8af46ae30d5da0ab75fb37cce25ed18849a77
|
3 |
+
size 3510739808
|
model-00034-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b35d01cd2551ea952a66f0dc99994da13b0585991914def92744f49d079471b0
|
3 |
+
size 3510739808
|
model-00035-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbc5e17860c5cb786b97e843e61489c806ba4b3f81805efd517272c4cdef4912
|
3 |
+
size 3510739808
|
model-00036-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04e473ed195a967e28ce494561ae17bc1b0b1b8ba9bce8e916a000477f294d1f
|
3 |
+
size 3510739808
|
model-00037-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9cb9dbeb0d9b9fb1414421c40fb77887ae2c5a72ae2114538322b5468340d44
|
3 |
+
size 3510739808
|
model-00038-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f04c5bcdce77116fa013fe8bec74149986c7e181b831d5cbf2336746ed5f789
|
3 |
+
size 3510739808
|
model-00039-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d494a0cdb3d81d12b57452317fcb6c22e2f27d4d1e5d1d57d14e212461ec6d85
|
3 |
+
size 3510739808
|
model-00040-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b93a4a502934019d5c9854f89ed555067975262d22fce5622ca320f1581ee498
|
3 |
+
size 3510739808
|
model-00041-of-00083.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d01aab48a7a5fcf935597a460bc6683f1865c56495feded7ee2d8d005a39af80
|
3 |
+
size 3510739808
|