File size: 27,004 Bytes
7e45025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Install Dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already up-to-date: transformers in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (4.21.3)\n",
      "Requirement already up-to-date: torch in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (1.12.1)\n",
      "Requirement already up-to-date: torchvision in c:\\users\\divanma\\appdata\\roaming\\python\\python37\\site-packages (0.13.1)\n",
      "Requirement already satisfied, skipping upgrade: numpy>=1.17 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (1.21.6)\n",
      "Requirement already satisfied, skipping upgrade: pyyaml>=5.1 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (6.0)\n",
      "Requirement already satisfied, skipping upgrade: tokenizers!=0.11.3,<0.13,>=0.11.1 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (0.12.1)\n",
      "Requirement already satisfied, skipping upgrade: requests in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (2.28.1)\n",
      "Requirement already satisfied, skipping upgrade: importlib-metadata; python_version < \"3.8\" in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (4.11.3)\n",
      "Requirement already satisfied, skipping upgrade: packaging>=20.0 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (21.3)\n",
      "Requirement already satisfied, skipping upgrade: huggingface-hub<1.0,>=0.1.0 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (0.9.1)\n",
      "Requirement already satisfied, skipping upgrade: tqdm>=4.27 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (4.64.1)\n",
      "Requirement already satisfied, skipping upgrade: regex!=2019.12.17 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (2022.9.11)\n",
      "Requirement already satisfied, skipping upgrade: filelock in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from transformers) (3.8.0)\n",
      "Requirement already satisfied, skipping upgrade: typing-extensions in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from torch) (4.1.1)\n",
      "Requirement already satisfied, skipping upgrade: pillow!=8.3.*,>=5.3.0 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from torchvision) (5.4.1)\n",
      "Requirement already satisfied, skipping upgrade: certifi>=2017.4.17 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from requests->transformers) (2022.6.15)\n",
      "Requirement already satisfied, skipping upgrade: charset-normalizer<3,>=2 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from requests->transformers) (2.0.4)\n",
      "Requirement already satisfied, skipping upgrade: urllib3<1.27,>=1.21.1 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from requests->transformers) (1.26.9)\n",
      "Requirement already satisfied, skipping upgrade: idna<4,>=2.5 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from requests->transformers) (3.3)\n",
      "Requirement already satisfied, skipping upgrade: zipp>=0.5 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from importlib-metadata; python_version < \"3.8\"->transformers) (3.8.0)\n",
      "Requirement already satisfied, skipping upgrade: pyparsing!=3.0.5,>=2.0.2 in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from packaging>=20.0->transformers) (3.0.4)\n",
      "Requirement already satisfied, skipping upgrade: colorama; platform_system == \"Windows\" in c:\\users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages (from tqdm>=4.27->transformers) (0.4.5)\n"
     ]
    }
   ],
   "source": [
    "!pip install -U --user transformers torch torchvision"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Import Dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer, AutoModelForCausalLM\n",
    "import os"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Load from Local"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [],
   "source": [
    "root_dir = os.getcwd()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Tokenizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
    "tokenizer = AutoTokenizer.from_pretrained(root_dir)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [
    {
     "ename": "MemoryError",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36mnti\u001b[1;34m(s)\u001b[0m\n\u001b[0;32m    186\u001b[0m             \u001b[0ms\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnts\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"ascii\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"strict\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 187\u001b[1;33m             \u001b[0mn\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstrip\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;34m\"0\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m8\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    188\u001b[0m         \u001b[1;32mexcept\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;31mValueError\u001b[0m: invalid literal for int() with base 8: 'q\\x03ctorch'",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[1;31mInvalidHeaderError\u001b[0m                        Traceback (most recent call last)",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36mnext\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m   2288\u001b[0m             \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2289\u001b[1;33m                 \u001b[0mtarinfo\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtarinfo\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfromtarfile\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   2290\u001b[0m             \u001b[1;32mexcept\u001b[0m \u001b[0mEOFHeaderError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36mfromtarfile\u001b[1;34m(cls, tarfile)\u001b[0m\n\u001b[0;32m   1094\u001b[0m         \u001b[0mbuf\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtarfile\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfileobj\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mread\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mBLOCKSIZE\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1095\u001b[1;33m         \u001b[0mobj\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcls\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfrombuf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbuf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarfile\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mencoding\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarfile\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0merrors\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1096\u001b[0m         \u001b[0mobj\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moffset\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtarfile\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfileobj\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtell\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m-\u001b[0m \u001b[0mBLOCKSIZE\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36mfrombuf\u001b[1;34m(cls, buf, encoding, errors)\u001b[0m\n\u001b[0;32m   1036\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1037\u001b[1;33m         \u001b[0mchksum\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnti\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbuf\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m148\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;36m156\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1038\u001b[0m         \u001b[1;32mif\u001b[0m \u001b[0mchksum\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mcalc_chksums\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbuf\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36mnti\u001b[1;34m(s)\u001b[0m\n\u001b[0;32m    188\u001b[0m         \u001b[1;32mexcept\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 189\u001b[1;33m             \u001b[1;32mraise\u001b[0m \u001b[0mInvalidHeaderError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"invalid header\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    190\u001b[0m     \u001b[1;32mreturn\u001b[0m \u001b[0mn\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;31mInvalidHeaderError\u001b[0m: invalid header",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[1;31mReadError\u001b[0m                                 Traceback (most recent call last)",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages\\torch\\serialization.py\u001b[0m in \u001b[0;36m_load\u001b[1;34m(f, map_location, pickle_module, **pickle_load_args)\u001b[0m\n\u001b[0;32m    555\u001b[0m             \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 556\u001b[1;33m                 \u001b[0mstorage\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mobj\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    557\u001b[0m                 \u001b[0mstorage_dtype\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0muint8\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages\\torch\\serialization.py\u001b[0m in \u001b[0;36mlegacy_load\u001b[1;34m(f)\u001b[0m\n\u001b[0;32m    466\u001b[0m             \u001b[1;31m# and the tensor back up with no problems in _this_ and future\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 467\u001b[1;33m             \u001b[1;31m# versions of pytorch, but in older versions, here's the problem:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    468\u001b[0m             \u001b[1;31m# the storage will be loaded up as a _UntypedStorage, and then the\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36mopen\u001b[1;34m(cls, name, mode, fileobj, bufsize, **kwargs)\u001b[0m\n\u001b[0;32m   1590\u001b[0m                 \u001b[1;32mraise\u001b[0m \u001b[0mCompressionError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"unknown compression type %r\"\u001b[0m \u001b[1;33m%\u001b[0m \u001b[0mcomptype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1591\u001b[1;33m             \u001b[1;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfilemode\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfileobj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1592\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36mtaropen\u001b[1;34m(cls, name, mode, fileobj, **kwargs)\u001b[0m\n\u001b[0;32m   1620\u001b[0m             \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"mode must be 'r', 'a', 'w' or 'x'\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1621\u001b[1;33m         \u001b[1;32mreturn\u001b[0m \u001b[0mcls\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfileobj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1622\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, name, mode, fileobj, format, tarinfo, dereference, ignore_zeros, encoding, errors, pax_headers, debug, errorlevel, copybufsize)\u001b[0m\n\u001b[0;32m   1483\u001b[0m                 \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfirstmember\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1484\u001b[1;33m                 \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfirstmember\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnext\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1485\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\tarfile.py\u001b[0m in \u001b[0;36mnext\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m   2300\u001b[0m                 \u001b[1;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moffset\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2301\u001b[1;33m                     \u001b[1;32mraise\u001b[0m \u001b[0mReadError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0me\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   2302\u001b[0m             \u001b[1;32mexcept\u001b[0m \u001b[0mEmptyHeaderError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;31mReadError\u001b[0m: invalid header",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[1;31mRuntimeError\u001b[0m                              Traceback (most recent call last)",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages\\transformers\\modeling_utils.py\u001b[0m in \u001b[0;36mload_state_dict\u001b[1;34m(checkpoint_file)\u001b[0m\n\u001b[0;32m    366\u001b[0m     \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 367\u001b[1;33m         \u001b[1;32mreturn\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcheckpoint_file\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmap_location\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m\"cpu\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    368\u001b[0m     \u001b[1;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages\\torch\\serialization.py\u001b[0m in \u001b[0;36mload\u001b[1;34m(f, map_location, pickle_module, **pickle_load_args)\u001b[0m\n\u001b[0;32m    386\u001b[0m     \u001b[0mserialized_container_types\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m{\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 387\u001b[1;33m     \u001b[0mserialized_storages\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m{\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    388\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages\\torch\\serialization.py\u001b[0m in \u001b[0;36m_load\u001b[1;34m(f, map_location, pickle_module, **pickle_load_args)\u001b[0m\n\u001b[0;32m    559\u001b[0m                 \u001b[0mstorage_numel\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mstorage\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnbytes\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 560\u001b[1;33m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    561\u001b[0m             \u001b[1;31m# If storage is allocated, ensure that any other saved storages\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;31mRuntimeError\u001b[0m: c:\\dev\\P\\gpt-neo-1.3B-fiction-novel-generation\\pytorch_model.bin is a zip archive (did you mean to use torch.jit.load()?)",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[1;31mMemoryError\u001b[0m                               Traceback (most recent call last)",
      "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_20996\\2464673473.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mmodel\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mAutoModelForCausalLM\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfrom_pretrained\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mroot_dir\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages\\transformers\\models\\auto\\auto_factory.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[1;34m(cls, pretrained_model_name_or_path, *model_args, **kwargs)\u001b[0m\n\u001b[0;32m    444\u001b[0m         \u001b[1;32melif\u001b[0m \u001b[0mtype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mconfig\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mcls\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_model_mapping\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    445\u001b[0m             \u001b[0mmodel_class\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_get_model_class\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mconfig\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcls\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_model_mapping\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 446\u001b[1;33m             \u001b[1;32mreturn\u001b[0m \u001b[0mmodel_class\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfrom_pretrained\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpretrained_model_name_or_path\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0mmodel_args\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mconfig\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mconfig\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    447\u001b[0m         raise ValueError(\n\u001b[0;32m    448\u001b[0m             \u001b[1;34mf\"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\\n\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages\\transformers\\modeling_utils.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[1;34m(cls, pretrained_model_name_or_path, *model_args, **kwargs)\u001b[0m\n\u001b[0;32m   2065\u001b[0m             \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mis_sharded\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0mstate_dict\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   2066\u001b[0m                 \u001b[1;31m# Time to load the checkpoint\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2067\u001b[1;33m                 \u001b[0mstate_dict\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mload_state_dict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mresolved_archive_file\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   2068\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   2069\u001b[0m             \u001b[1;31m# set dtype to instantiate the model under:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\site-packages\\transformers\\modeling_utils.py\u001b[0m in \u001b[0;36mload_state_dict\u001b[1;34m(checkpoint_file)\u001b[0m\n\u001b[0;32m    369\u001b[0m         \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    370\u001b[0m             \u001b[1;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcheckpoint_file\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 371\u001b[1;33m                 \u001b[1;32mif\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mread\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstartswith\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"version\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    372\u001b[0m                     raise OSError(\n\u001b[0;32m    373\u001b[0m                         \u001b[1;34m\"You seem to have cloned a repository without having git-lfs installed. Please install \"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mc:\\Users\\divanma\\.conda\\envs\\pytorchenv\\lib\\encodings\\cp1252.py\u001b[0m in \u001b[0;36mdecode\u001b[1;34m(self, input, final)\u001b[0m\n\u001b[0;32m     21\u001b[0m \u001b[1;32mclass\u001b[0m \u001b[0mIncrementalDecoder\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcodecs\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mIncrementalDecoder\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     22\u001b[0m     \u001b[1;32mdef\u001b[0m \u001b[0mdecode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0minput\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfinal\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 23\u001b[1;33m         \u001b[1;32mreturn\u001b[0m \u001b[0mcodecs\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcharmap_decode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0minput\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0merrors\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mdecoding_table\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     24\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     25\u001b[0m \u001b[1;32mclass\u001b[0m \u001b[0mStreamWriter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mCodec\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mcodecs\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mStreamWriter\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;31mMemoryError\u001b[0m: "
     ]
    }
   ],
   "source": [
    "model = AutoModelForCausalLM.from_pretrained(root_dir)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Inference Example"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Model Usage"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "inputs = tokenizer('Hello, my dog is cute', return_tensors='pt')\n",
    "outputs = model(**inputs, labels=inputs['input_ids'])\n",
    "\n",
    "print(f'[OUTPUT] {outputs}')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Valuation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "loss = outputs.loss\n",
    "logits = outputs.logits\n",
    "\n",
    "print(f'[LOSS] {loss}, [LOGITS] {logits}')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.7.3 ('pytorchenv')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "a1f58ad6df42b3a9f00d8caf282612c40ca90330c75003a8465db9aa3eb9729c"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}