FuryTMP commited on
Commit
419f171
·
verified ·
1 Parent(s): e5103cd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -3
README.md CHANGED
@@ -1,3 +1,60 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - depth-estimation
5
+ - onnx
6
+ - computer-vision
7
+ - visiondepth3d
8
+ - mit-license
9
+ ---
10
+
11
+ # Distill-Any-Depth (ONNX) – For VisionDepth3D
12
+
13
+ > **Model Origin:** This model is based on [Distill-Any-Depth by Westlake-AGI-Lab](https://github.com/Westlake-AGI-Lab/Distill-Any-Depth), originally developed by Westlake-AGI-Lab.
14
+ > I did not train this model — I have converted it to ONNX format for fast, GPU-accelerated inference within tools such as VisionDepth3D.
15
+
16
+ ## 🧠 About This Model
17
+
18
+ This is a direct conversion of the **Distill-Any-Depth** PyTorch model to **ONNX**, real-time depth estimation from single RGB images.
19
+
20
+ ### ✔️ Key Features:
21
+ - ONNX format (exported from PyTorch)
22
+ - Compatible with ONNX Runtime and TensorRT
23
+ - Excellent for 2D to 3D depth workflows
24
+ - Works seamlessly with **VisionDepth3D**
25
+
26
+ ## 📌 Intended Use
27
+
28
+ - Real-time or batch depth map generation
29
+ - 2D to 3D conversion pipelines (e.g., SBS 3D video)
30
+ - Works on Windows, Linux (CUDA-supported)
31
+
32
+ ## 📜 License and Attribution
33
+
34
+ ### Citation
35
+
36
+ ```
37
+ @article{he2025distill,
38
+ title = {Distill Any Depth: Distillation Creates a Stronger Monocular Depth Estimator},
39
+ author = {Xiankang He and Dongyan Guo and Hongji Li and Ruibo Li and Ying Cui and Chi Zhang},
40
+ year = {2025},
41
+ journal = {arXiv preprint arXiv: 2502.19204}
42
+ }
43
+ ```
44
+
45
+ - **Source Model:** [Distill-Any-Depth by Westlake-AGI-Lab](https://github.com/Westlake-AGI-Lab/Distill-Any-Depth)
46
+ - **License:** MIT
47
+ - **Modifications:** Only format conversion (no retraining or weight changes)
48
+
49
+ > If you use this model, please credit the original authors: Westlake-AGI-Lab.
50
+
51
+ ## 💻 How to Use In VisionDepth3D
52
+
53
+ Place Folder containing onnx model into weights folder in VisionDepth3D
54
+
55
+ ```
56
+ VisionDepth3D¬
57
+ Weights¬
58
+ Distill Any Depth Large¬
59
+ model.onnx
60
+ ```