bert-base-multilingual-cased-place-entry-classification

This model is designed to classify geographic encyclopedia articles describing places. It is a fine-tuned version of the bert-base-multilingual-cased model. It has been trained on GeoEDdA-TopoRel, a manually annotated subset of the French Encyclopédie ou dictionnaire raisonné des sciences des arts et des métiers par une société de gens de lettres (1751-1772) edited by Diderot and d'Alembert (provided by the ARTFL Encyclopédie Project).

Model Description

Class labels

The tagset is as follows (with examples from the dataset):

  • City: villes, bourgs, villages, etc.
  • Island: îles, presqu'îles, etc.
  • Region: régions, contrées, provinces, cercles, etc.
  • River: rivières, fleuves,etc.
  • Mountain: montagnes, vallées, etc.
  • Country: pays, royaumes, etc.
  • Sea: mer, golphe, baie, etc.
  • Other: promontoires, caps, rivages, déserts, etc.
  • Human-made: ports, châteaux, forteresses, abbayes, etc.
  • Lake: lacs, étangs, marais, etc.

Dataset

The model was trained using the GeoEDdA-TopoRel dataset. The dataset is splitted into train, validation and test sets which have the following distribution of entries among classes:

Train Validation Test
City 921 33 40
Island 216 20 27
Region 138 40 28
River 133 20 28
Mountain 63 29 22
Human-made 38 10 9
Other 27 12 12
Sea 26 13 12
Lake 22 9 9
Country 16 14 13

Evaluation

  • Overall macro-average model performances
Precision Recall F-score
0.95 0.92 0.93
  • Overall weighted-average model performances
Precision Recall F-score
0.94 0.94 0.94
  • Model performances (Test set)
Precision Recall F-score Support
City 0.91 1.00 0.95 40
Island 0.96 0.96 0.96 27
River 0.97 1.00 0.98 28
Region 0.86 0.89 0.88 28
Mountain 1.00 0.95 0.98 22
Country 1.00 0.85 0.92 13
Sea 1.00 0.92 0.96 12
Other 0.90 0.75 0.82 12
Human-made 0.90 1.00 0.95 9
Lake 1.00 0.89 0.94 9

How to Get Started with the Model

Use the code below to get started with the model.

import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
device = torch.device("mps" if torch.backends.mps.is_available() else ("cuda" if torch.cuda.is_available() else "cpu"))

tokenizer = AutoTokenizer.from_pretrained("GEODE/bert-base-multilingual-cased-place-entry-classification")
model = AutoModelForSequenceClassification.from_pretrained("GEODE/bert-base-multilingual-cased-place-entry-classification")

pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, truncation=True, device=device)

samples = [
    "* ALBI, (Géog.) ville de France, capitale de l'Albigeois, dans le haut Languedoc : elle est sur le Tarn. Long. 19. 49. lat. 43. 55. 44.",
    "* ARCALU (Principauté d') petit état des Tartares-Monguls, sur la riviere d'Hoamko, où commence  la grande muraille de la Chine, sous le 122e degré de longitude & le 42e de latitude septentrionale."
]


for sample in samples:
    print(pipe(sample))


# Output

[{'label': 'City', 'score': 0.9969543218612671}]
[{'label': 'Region', 'score': 0.9811353087425232}]

Bias, Risks, and Limitations

This model was trained entirely on French encyclopaedic entries classified as Geography (and place) and will likely not perform well on text in other languages or other corpora.

Acknowledgement

The authors are grateful to the ASLAN project (ANR-10-LABX-0081) of the Université de Lyon, for its financial support within the French program "Investments for the Future" operated by the National Research Agency (ANR). Data courtesy the ARTFL Encyclopédie Project, University of Chicago.

Downloads last month
33
Safetensors
Model size
0.2B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for GEODE/bert-base-multilingual-cased-place-entry-classification

Finetuned
(900)
this model

Dataset used to train GEODE/bert-base-multilingual-cased-place-entry-classification

Space using GEODE/bert-base-multilingual-cased-place-entry-classification 1