GaborMadarasz commited on
Commit
d108038
·
verified ·
1 Parent(s): 52984be

Add new CrossEncoder model

Browse files
README.md ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - hu
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - cross-encoder
8
+ - reranker
9
+ - generated_from_trainer
10
+ - dataset_size:32113
11
+ - loss:BinaryCrossEntropyLoss
12
+ base_model: GaborMadarasz/ModernBERT-base-hungarian
13
+ pipeline_tag: text-ranking
14
+ library_name: sentence-transformers
15
+ metrics:
16
+ - map
17
+ - mrr@10
18
+ - ndcg@10
19
+ model-index:
20
+ - name: ModernBERT-base trained on Chemistry
21
+ results:
22
+ - task:
23
+ type: cross-encoder-reranking
24
+ name: Cross Encoder Reranking
25
+ dataset:
26
+ name: chem dev
27
+ type: chem-dev
28
+ metrics:
29
+ - type: map
30
+ value: 0.4646
31
+ name: Map
32
+ - type: mrr@10
33
+ value: 0.4614
34
+ name: Mrr@10
35
+ - type: ndcg@10
36
+ value: 0.4928
37
+ name: Ndcg@10
38
+ ---
39
+
40
+ # ModernBERT-base trained on Chemistry
41
+
42
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [GaborMadarasz/ModernBERT-base-hungarian](https://huggingface.co/GaborMadarasz/ModernBERT-base-hungarian) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Cross Encoder
48
+ - **Base model:** [GaborMadarasz/ModernBERT-base-hungarian](https://huggingface.co/GaborMadarasz/ModernBERT-base-hungarian) <!-- at revision 32d70514a6587e31e23ff8ea3d0dc98bc61e42e4 -->
49
+ - **Maximum Sequence Length:** 8192 tokens
50
+ - **Number of Output Labels:** 1 label
51
+ <!-- - **Training Dataset:** Unknown -->
52
+ - **Language:** hu
53
+ - **License:** apache-2.0
54
+
55
+ ### Model Sources
56
+
57
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
58
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
61
+
62
+ ## Usage
63
+
64
+ ### Direct Usage (Sentence Transformers)
65
+
66
+ First install the Sentence Transformers library:
67
+
68
+ ```bash
69
+ pip install -U sentence-transformers
70
+ ```
71
+
72
+ Then you can load this model and run inference.
73
+ ```python
74
+ from sentence_transformers import CrossEncoder
75
+
76
+ # Download from the 🤗 Hub
77
+ model = CrossEncoder("GaborMadarasz/reranker-ModernBERT-base-hungarian")
78
+ # Get scores for pairs of texts
79
+ pairs = [
80
+ ['Milyen halmazállapotú a klór szobahőmérsékleten?', 'Gáz'],
81
+ ['Milyen halmazállapotú a klór szobahőmérsékleten?', 'Gáz.'],
82
+ ['Mi az izoméria fogalma?', 'Azonos összegképletű, de eltérő szerkezetű és tulajdonságú anyagok. '],
83
+ ['Melyik elektronhéjon található a hidrogénatom egyetlen elektronja?', 'Az első héjon.'],
84
+ ['Milyen felhasználási területei vannak a szilíciumnak?', 'Ötvözőelemként, tranzisztorok, integrált áramkörök, fényelemek előállítására.'],
85
+ ]
86
+ scores = model.predict(pairs)
87
+ print(scores.shape)
88
+ # (5,)
89
+
90
+ # Or rank different texts based on similarity to a single text
91
+ ranks = model.rank(
92
+ 'Milyen halmazállapotú a klór szobahőmérsékleten?',
93
+ [
94
+ 'Gáz',
95
+ 'Gáz.',
96
+ 'Azonos összegképletű, de eltérő szerkezetű és tulajdonságú anyagok. ',
97
+ 'Az első héjon.',
98
+ 'Ötvözőelemként, tranzisztorok, integrált áramkörök, fényelemek előállítására.',
99
+ ]
100
+ )
101
+ # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
102
+ ```
103
+
104
+ <!--
105
+ ### Direct Usage (Transformers)
106
+
107
+ <details><summary>Click to see the direct usage in Transformers</summary>
108
+
109
+ </details>
110
+ -->
111
+
112
+ <!--
113
+ ### Downstream Usage (Sentence Transformers)
114
+
115
+ You can finetune this model on your own dataset.
116
+
117
+ <details><summary>Click to expand</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ ## Evaluation
129
+
130
+ ### Metrics
131
+
132
+ #### Cross Encoder Reranking
133
+
134
+ * Dataset: `chem-dev`
135
+ * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
136
+ ```json
137
+ {
138
+ "at_k": 10,
139
+ "always_rerank_positives": false
140
+ }
141
+ ```
142
+
143
+ | Metric | Value |
144
+ |:------------|:---------------------|
145
+ | map | 0.4646 (+0.0929) |
146
+ | mrr@10 | 0.4614 (+0.0966) |
147
+ | **ndcg@10** | **0.4928 (+0.0910)** |
148
+
149
+ <!--
150
+ ## Bias, Risks and Limitations
151
+
152
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
153
+ -->
154
+
155
+ <!--
156
+ ### Recommendations
157
+
158
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
159
+ -->
160
+
161
+ ## Training Details
162
+
163
+ ### Training Dataset
164
+
165
+ #### Unnamed Dataset
166
+
167
+ * Size: 32,113 training samples
168
+ * Columns: <code>query</code>, <code>answer</code>, and <code>label</code>
169
+ * Approximate statistics based on the first 1000 samples:
170
+ | | query | answer | label |
171
+ |:--------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------|
172
+ | type | string | string | int |
173
+ | details | <ul><li>min: 8 characters</li><li>mean: 52.3 characters</li><li>max: 159 characters</li></ul> | <ul><li>min: 1 characters</li><li>mean: 83.87 characters</li><li>max: 531 characters</li></ul> | <ul><li>0: ~69.80%</li><li>1: ~30.20%</li></ul> |
174
+ * Samples:
175
+ | query | answer | label |
176
+ |:--------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------|
177
+ | <code>Milyen halmazállapotú a klór szobahőmérsékleten?</code> | <code>Gáz</code> | <code>1</code> |
178
+ | <code>Milyen halmazállapotú a klór szobahőmérsékleten?</code> | <code>Gáz.</code> | <code>1</code> |
179
+ | <code>Mi az izoméria fogalma?</code> | <code>Azonos összegképletű, de eltérő szerkezetű és tulajdonságú anyagok. </code> | <code>1</code> |
180
+ * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
181
+ ```json
182
+ {
183
+ "activation_fn": "torch.nn.modules.linear.Identity",
184
+ "pos_weight": 5
185
+ }
186
+ ```
187
+
188
+ ### Training Hyperparameters
189
+ #### Non-Default Hyperparameters
190
+
191
+ - `eval_strategy`: steps
192
+ - `per_device_train_batch_size`: 2
193
+ - `per_device_eval_batch_size`: 2
194
+ - `gradient_accumulation_steps`: 8
195
+ - `learning_rate`: 2e-05
196
+ - `warmup_ratio`: 0.1
197
+ - `seed`: 12
198
+ - `dataloader_num_workers`: 2
199
+ - `load_best_model_at_end`: True
200
+
201
+ #### All Hyperparameters
202
+ <details><summary>Click to expand</summary>
203
+
204
+ - `overwrite_output_dir`: False
205
+ - `do_predict`: False
206
+ - `eval_strategy`: steps
207
+ - `prediction_loss_only`: True
208
+ - `per_device_train_batch_size`: 2
209
+ - `per_device_eval_batch_size`: 2
210
+ - `per_gpu_train_batch_size`: None
211
+ - `per_gpu_eval_batch_size`: None
212
+ - `gradient_accumulation_steps`: 8
213
+ - `eval_accumulation_steps`: None
214
+ - `torch_empty_cache_steps`: None
215
+ - `learning_rate`: 2e-05
216
+ - `weight_decay`: 0.0
217
+ - `adam_beta1`: 0.9
218
+ - `adam_beta2`: 0.999
219
+ - `adam_epsilon`: 1e-08
220
+ - `max_grad_norm`: 1.0
221
+ - `num_train_epochs`: 3
222
+ - `max_steps`: -1
223
+ - `lr_scheduler_type`: linear
224
+ - `lr_scheduler_kwargs`: {}
225
+ - `warmup_ratio`: 0.1
226
+ - `warmup_steps`: 0
227
+ - `log_level`: passive
228
+ - `log_level_replica`: warning
229
+ - `log_on_each_node`: True
230
+ - `logging_nan_inf_filter`: True
231
+ - `save_safetensors`: True
232
+ - `save_on_each_node`: False
233
+ - `save_only_model`: False
234
+ - `restore_callback_states_from_checkpoint`: False
235
+ - `no_cuda`: False
236
+ - `use_cpu`: False
237
+ - `use_mps_device`: False
238
+ - `seed`: 12
239
+ - `data_seed`: None
240
+ - `jit_mode_eval`: False
241
+ - `use_ipex`: False
242
+ - `bf16`: False
243
+ - `fp16`: False
244
+ - `fp16_opt_level`: O1
245
+ - `half_precision_backend`: auto
246
+ - `bf16_full_eval`: False
247
+ - `fp16_full_eval`: False
248
+ - `tf32`: None
249
+ - `local_rank`: 0
250
+ - `ddp_backend`: None
251
+ - `tpu_num_cores`: None
252
+ - `tpu_metrics_debug`: False
253
+ - `debug`: []
254
+ - `dataloader_drop_last`: False
255
+ - `dataloader_num_workers`: 2
256
+ - `dataloader_prefetch_factor`: None
257
+ - `past_index`: -1
258
+ - `disable_tqdm`: False
259
+ - `remove_unused_columns`: True
260
+ - `label_names`: None
261
+ - `load_best_model_at_end`: True
262
+ - `ignore_data_skip`: False
263
+ - `fsdp`: []
264
+ - `fsdp_min_num_params`: 0
265
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
266
+ - `fsdp_transformer_layer_cls_to_wrap`: None
267
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
268
+ - `deepspeed`: None
269
+ - `label_smoothing_factor`: 0.0
270
+ - `optim`: adamw_torch
271
+ - `optim_args`: None
272
+ - `adafactor`: False
273
+ - `group_by_length`: False
274
+ - `length_column_name`: length
275
+ - `ddp_find_unused_parameters`: None
276
+ - `ddp_bucket_cap_mb`: None
277
+ - `ddp_broadcast_buffers`: False
278
+ - `dataloader_pin_memory`: True
279
+ - `dataloader_persistent_workers`: False
280
+ - `skip_memory_metrics`: True
281
+ - `use_legacy_prediction_loop`: False
282
+ - `push_to_hub`: False
283
+ - `resume_from_checkpoint`: None
284
+ - `hub_model_id`: None
285
+ - `hub_strategy`: every_save
286
+ - `hub_private_repo`: None
287
+ - `hub_always_push`: False
288
+ - `hub_revision`: None
289
+ - `gradient_checkpointing`: False
290
+ - `gradient_checkpointing_kwargs`: None
291
+ - `include_inputs_for_metrics`: False
292
+ - `include_for_metrics`: []
293
+ - `eval_do_concat_batches`: True
294
+ - `fp16_backend`: auto
295
+ - `push_to_hub_model_id`: None
296
+ - `push_to_hub_organization`: None
297
+ - `mp_parameters`:
298
+ - `auto_find_batch_size`: False
299
+ - `full_determinism`: False
300
+ - `torchdynamo`: None
301
+ - `ray_scope`: last
302
+ - `ddp_timeout`: 1800
303
+ - `torch_compile`: False
304
+ - `torch_compile_backend`: None
305
+ - `torch_compile_mode`: None
306
+ - `include_tokens_per_second`: False
307
+ - `include_num_input_tokens_seen`: False
308
+ - `neftune_noise_alpha`: None
309
+ - `optim_target_modules`: None
310
+ - `batch_eval_metrics`: False
311
+ - `eval_on_start`: False
312
+ - `use_liger_kernel`: False
313
+ - `liger_kernel_config`: None
314
+ - `eval_use_gather_object`: False
315
+ - `average_tokens_across_devices`: False
316
+ - `prompts`: None
317
+ - `batch_sampler`: batch_sampler
318
+ - `multi_dataset_batch_sampler`: proportional
319
+ - `router_mapping`: {}
320
+ - `learning_rate_mapping`: {}
321
+
322
+ </details>
323
+
324
+ ### Training Logs
325
+ | Epoch | Step | Training Loss | chem-dev_ndcg@10 |
326
+ |:----------:|:--------:|:-------------:|:--------------------:|
327
+ | -1 | -1 | - | 0.1188 (-0.2831) |
328
+ | 0.0005 | 1 | 1.9222 | - |
329
+ | 0.0498 | 100 | 1.8084 | - |
330
+ | 0.0996 | 200 | 1.2947 | 0.2862 (-0.1157) |
331
+ | 0.1495 | 300 | 1.1573 | - |
332
+ | 0.1993 | 400 | 1.17 | 0.3567 (-0.0452) |
333
+ | 0.2491 | 500 | 1.0609 | - |
334
+ | 0.2989 | 600 | 1.01 | 0.3747 (-0.0272) |
335
+ | 0.3488 | 700 | 0.9806 | - |
336
+ | 0.3986 | 800 | 0.9208 | 0.3963 (-0.0056) |
337
+ | 0.4484 | 900 | 0.9022 | - |
338
+ | 0.4982 | 1000 | 0.8722 | 0.4106 (+0.0087) |
339
+ | 0.5480 | 1100 | 0.9325 | - |
340
+ | 0.5979 | 1200 | 0.768 | 0.4316 (+0.0298) |
341
+ | 0.6477 | 1300 | 0.8151 | - |
342
+ | 0.6975 | 1400 | 0.7569 | 0.4506 (+0.0487) |
343
+ | 0.7473 | 1500 | 0.7216 | - |
344
+ | 0.7972 | 1600 | 0.7571 | 0.4643 (+0.0625) |
345
+ | 0.8470 | 1700 | 0.6993 | - |
346
+ | 0.8968 | 1800 | 0.6709 | 0.4713 (+0.0694) |
347
+ | 0.9466 | 1900 | 0.7021 | - |
348
+ | 0.9965 | 2000 | 0.7693 | 0.4805 (+0.0787) |
349
+ | 1.0458 | 2100 | 0.5179 | - |
350
+ | 1.0957 | 2200 | 0.4932 | 0.4800 (+0.0781) |
351
+ | 1.1455 | 2300 | 0.5568 | - |
352
+ | 1.1953 | 2400 | 0.4191 | 0.4821 (+0.0803) |
353
+ | 1.2451 | 2500 | 0.4702 | - |
354
+ | 1.2949 | 2600 | 0.4126 | 0.4851 (+0.0833) |
355
+ | 1.3448 | 2700 | 0.4744 | - |
356
+ | 1.3946 | 2800 | 0.4404 | 0.4907 (+0.0888) |
357
+ | 1.4444 | 2900 | 0.4712 | - |
358
+ | 1.4942 | 3000 | 0.4382 | 0.4913 (+0.0894) |
359
+ | 1.5441 | 3100 | 0.5049 | - |
360
+ | 1.5939 | 3200 | 0.4714 | 0.4886 (+0.0868) |
361
+ | 1.6437 | 3300 | 0.3885 | - |
362
+ | 1.6935 | 3400 | 0.4361 | 0.4924 (+0.0906) |
363
+ | 1.7434 | 3500 | 0.4207 | - |
364
+ | **1.7932** | **3600** | **0.4384** | **0.4928 (+0.0910)** |
365
+ | 1.8430 | 3700 | 0.4187 | - |
366
+ | 1.8928 | 3800 | 0.4271 | 0.4937 (+0.0919) |
367
+ | 1.9426 | 3900 | 0.3581 | - |
368
+ | 1.9925 | 4000 | 0.3751 | 0.4910 (+0.0891) |
369
+ | 2.0419 | 4100 | 0.2494 | - |
370
+ | 2.0917 | 4200 | 0.2045 | 0.4869 (+0.0850) |
371
+ | 2.1415 | 4300 | 0.1532 | - |
372
+ | 2.1913 | 4400 | 0.1268 | 0.4838 (+0.0820) |
373
+ | 2.2411 | 4500 | 0.2108 | - |
374
+ | 2.2910 | 4600 | 0.2292 | 0.4889 (+0.0870) |
375
+ | 2.3408 | 4700 | 0.2154 | - |
376
+ | 2.3906 | 4800 | 0.1574 | 0.4921 (+0.0902) |
377
+ | 2.4404 | 4900 | 0.1677 | - |
378
+ | 2.4903 | 5000 | 0.1596 | 0.4826 (+0.0807) |
379
+ | 2.5401 | 5100 | 0.1456 | - |
380
+ | 2.5899 | 5200 | 0.2177 | 0.4867 (+0.0849) |
381
+ | 2.6397 | 5300 | 0.1227 | - |
382
+ | 2.6895 | 5400 | 0.1638 | 0.4880 (+0.0862) |
383
+ | 2.7394 | 5500 | 0.1192 | - |
384
+ | 2.7892 | 5600 | 0.2003 | 0.4848 (+0.0829) |
385
+ | 2.8390 | 5700 | 0.2717 | - |
386
+ | 2.8888 | 5800 | 0.1546 | 0.4841 (+0.0822) |
387
+ | 2.9387 | 5900 | 0.268 | - |
388
+ | 2.9885 | 6000 | 0.2253 | 0.4858 (+0.0840) |
389
+ | -1 | -1 | - | 0.4928 (+0.0910) |
390
+
391
+ * The bold row denotes the saved checkpoint.
392
+
393
+ ### Framework Versions
394
+ - Python: 3.10.12
395
+ - Sentence Transformers: 5.0.0
396
+ - Transformers: 4.53.2
397
+ - PyTorch: 2.7.0+cpu
398
+ - Accelerate: 1.6.0
399
+ - Datasets: 3.2.0
400
+ - Tokenizers: 0.21.2
401
+
402
+ ## Citation
403
+
404
+ ### BibTeX
405
+
406
+ #### Sentence Transformers
407
+ ```bibtex
408
+ @inproceedings{reimers-2019-sentence-bert,
409
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
410
+ author = "Reimers, Nils and Gurevych, Iryna",
411
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
412
+ month = "11",
413
+ year = "2019",
414
+ publisher = "Association for Computational Linguistics",
415
+ url = "https://arxiv.org/abs/1908.10084",
416
+ }
417
+ ```
418
+
419
+ <!--
420
+ ## Glossary
421
+
422
+ *Clearly define terms in order to be accessible across audiences.*
423
+ -->
424
+
425
+ <!--
426
+ ## Model Card Authors
427
+
428
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
429
+ -->
430
+
431
+ <!--
432
+ ## Model Card Contact
433
+
434
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
435
+ -->
config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertForSequenceClassification"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": null,
8
+ "classifier_activation": "gelu",
9
+ "classifier_bias": false,
10
+ "classifier_dropout": 0.0,
11
+ "classifier_pooling": "mean",
12
+ "cls_token_id": 50281,
13
+ "decoder_bias": true,
14
+ "deterministic_flash_attn": false,
15
+ "embedding_dropout": 0.0,
16
+ "eos_token_id": null,
17
+ "global_attn_every_n_layers": 3,
18
+ "global_rope_theta": 160000.0,
19
+ "gradient_checkpointing": false,
20
+ "hidden_activation": "gelu",
21
+ "hidden_size": 768,
22
+ "id2label": {
23
+ "0": "LABEL_0"
24
+ },
25
+ "initializer_cutoff_factor": 2.0,
26
+ "initializer_range": 0.02,
27
+ "intermediate_size": 1152,
28
+ "label2id": {
29
+ "LABEL_0": 0
30
+ },
31
+ "layer_norm_eps": 1e-05,
32
+ "local_attention": 128,
33
+ "local_rope_theta": 10000.0,
34
+ "max_position_embeddings": 8192,
35
+ "mlp_bias": false,
36
+ "mlp_dropout": 0.0,
37
+ "model_type": "modernbert",
38
+ "norm_bias": false,
39
+ "norm_eps": 1e-05,
40
+ "num_attention_heads": 12,
41
+ "num_hidden_layers": 22,
42
+ "pad_token_id": 50283,
43
+ "position_embedding_type": "absolute",
44
+ "repad_logits_with_grad": false,
45
+ "sentence_transformers": {
46
+ "activation_fn": "torch.nn.modules.activation.Sigmoid",
47
+ "version": "5.0.0"
48
+ },
49
+ "sep_token_id": 50282,
50
+ "sparse_pred_ignore_index": -100,
51
+ "sparse_prediction": false,
52
+ "torch_dtype": "float32",
53
+ "transformers_version": "4.53.2",
54
+ "vocab_size": 52000
55
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebd8034784cd34d437731f89cb0c9a2e59b167a87220bc31fb703c0411dd55bd
3
+ size 603450212
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<|padding|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<|endoftext|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[UNK]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[CLS]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[SEP]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "5": {
44
+ "content": "[PAD]",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "6": {
52
+ "content": "[MASK]",
53
+ "lstrip": true,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ }
59
+ },
60
+ "clean_up_tokenization_spaces": true,
61
+ "cls_token": "[CLS]",
62
+ "extra_special_tokens": {},
63
+ "mask_token": "[MASK]",
64
+ "model_input_names": [
65
+ "input_ids",
66
+ "attention_mask"
67
+ ],
68
+ "model_max_length": 8192,
69
+ "pad_token": "[PAD]",
70
+ "sep_token": "[SEP]",
71
+ "tokenizer_class": "PreTrainedTokenizerFast",
72
+ "unk_token": "[UNK]"
73
+ }