Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
from threading import Thread
|
5 |
+
from typing import List, Dict, Any, Optional, Union
|
6 |
+
|
7 |
+
from fastapi import FastAPI, HTTPException, Request, BackgroundTasks
|
8 |
+
from fastapi.responses import StreamingResponse
|
9 |
+
from fastapi.middleware.cors import CORSMiddleware
|
10 |
+
from pydantic import BaseModel, Field
|
11 |
+
from transformers import AutoTokenizer, TextIteratorStreamer
|
12 |
+
from vllm import LLM, SamplingParams
|
13 |
+
|
14 |
+
|
15 |
+
# Initialize FastAPI app
|
16 |
+
app = FastAPI(title="GainEnergy/OGAI-24B API")
|
17 |
+
|
18 |
+
# Add CORS middleware
|
19 |
+
app.add_middleware(
|
20 |
+
CORSMiddleware,
|
21 |
+
allow_origins=["*"],
|
22 |
+
allow_credentials=True,
|
23 |
+
allow_methods=["*"],
|
24 |
+
allow_headers=["*"],
|
25 |
+
)
|
26 |
+
|
27 |
+
# Load environment variables
|
28 |
+
MODEL_ID = os.environ.get("MODEL_ID", "GainEnergy/OGAI-24B")
|
29 |
+
DEFAULT_MAX_LENGTH = int(os.environ.get("DEFAULT_MAX_LENGTH", "2048"))
|
30 |
+
DEFAULT_TEMPERATURE = float(os.environ.get("DEFAULT_TEMPERATURE", "0.7"))
|
31 |
+
|
32 |
+
# Initialize the model and tokenizer
|
33 |
+
try:
|
34 |
+
model = LLM(
|
35 |
+
model=MODEL_ID,
|
36 |
+
trust_remote_code=True,
|
37 |
+
tensor_parallel_size=torch.cuda.device_count(),
|
38 |
+
)
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
40 |
+
print(f"Model {MODEL_ID} loaded successfully!")
|
41 |
+
except Exception as e:
|
42 |
+
print(f"Error loading model: {e}")
|
43 |
+
raise
|
44 |
+
|
45 |
+
# Pydantic models for request/response
|
46 |
+
class Message(BaseModel):
|
47 |
+
role: str = Field(..., description="The role of the message sender (system, user, assistant)")
|
48 |
+
content: str = Field(..., description="The content of the message")
|
49 |
+
|
50 |
+
class GenerationRequest(BaseModel):
|
51 |
+
messages: List[Message] = Field(..., description="List of messages in the conversation")
|
52 |
+
temperature: Optional[float] = Field(DEFAULT_TEMPERATURE, description="Temperature for sampling")
|
53 |
+
max_tokens: Optional[int] = Field(DEFAULT_MAX_LENGTH, description="Maximum number of tokens to generate")
|
54 |
+
top_p: Optional[float] = Field(0.95, description="Top-p sampling parameter")
|
55 |
+
top_k: Optional[int] = Field(50, description="Top-k sampling parameter")
|
56 |
+
stream: Optional[bool] = Field(False, description="Whether to stream the response")
|
57 |
+
|
58 |
+
class GenerationResponse(BaseModel):
|
59 |
+
generated_text: str = Field(..., description="Generated text from the model")
|
60 |
+
|
61 |
+
# Helper function to format messages for the model
|
62 |
+
def format_messages(messages: List[Message]) -> str:
|
63 |
+
"""Format a list of messages into a prompt string the model can understand."""
|
64 |
+
formatted_prompt = ""
|
65 |
+
|
66 |
+
for message in messages:
|
67 |
+
if message.role == "system":
|
68 |
+
formatted_prompt += f"<|system|>\n{message.content}</s>\n"
|
69 |
+
elif message.role == "user":
|
70 |
+
formatted_prompt += f"<|user|>\n{message.content}</s>\n"
|
71 |
+
elif message.role == "assistant":
|
72 |
+
formatted_prompt += f"<|assistant|>\n{message.content}</s>\n"
|
73 |
+
|
74 |
+
# Add the final assistant token to prompt the model to generate a response
|
75 |
+
formatted_prompt += "<|assistant|>\n"
|
76 |
+
|
77 |
+
return formatted_prompt
|
78 |
+
|
79 |
+
# API endpoints
|
80 |
+
@app.get("/")
|
81 |
+
async def root():
|
82 |
+
"""Root endpoint with basic information."""
|
83 |
+
return {
|
84 |
+
"status": "running",
|
85 |
+
"model": MODEL_ID,
|
86 |
+
"version": "1.0.0"
|
87 |
+
}
|
88 |
+
|
89 |
+
@app.post("/generate", response_model=GenerationResponse)
|
90 |
+
async def generate(request: GenerationRequest):
|
91 |
+
"""Generate text based on the conversation history."""
|
92 |
+
try:
|
93 |
+
prompt = format_messages(request.messages)
|
94 |
+
|
95 |
+
sampling_params = SamplingParams(
|
96 |
+
temperature=request.temperature,
|
97 |
+
max_tokens=request.max_tokens,
|
98 |
+
top_p=request.top_p,
|
99 |
+
top_k=request.top_k
|
100 |
+
)
|
101 |
+
|
102 |
+
outputs = model.generate(prompt, sampling_params)
|
103 |
+
generated_text = outputs[0].outputs[0].text
|
104 |
+
|
105 |
+
return {"generated_text": generated_text}
|
106 |
+
|
107 |
+
except Exception as e:
|
108 |
+
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
|
109 |
+
|
110 |
+
@app.post("/generate_stream")
|
111 |
+
async def generate_stream(request: GenerationRequest):
|
112 |
+
"""Stream generated text based on the conversation history."""
|
113 |
+
if not request.stream:
|
114 |
+
return await generate(request)
|
115 |
+
|
116 |
+
try:
|
117 |
+
prompt = format_messages(request.messages)
|
118 |
+
|
119 |
+
sampling_params = SamplingParams(
|
120 |
+
temperature=request.temperature,
|
121 |
+
max_tokens=request.max_tokens,
|
122 |
+
top_p=request.top_p,
|
123 |
+
top_k=request.top_k
|
124 |
+
)
|
125 |
+
|
126 |
+
async def stream_generator():
|
127 |
+
for output in model.generate(prompt, sampling_params, stream=True):
|
128 |
+
chunk = output.outputs[0].text
|
129 |
+
yield f"data: {json.dumps({'text': chunk})}\n\n"
|
130 |
+
yield "data: [DONE]\n\n"
|
131 |
+
|
132 |
+
return StreamingResponse(
|
133 |
+
stream_generator(),
|
134 |
+
media_type="text/event-stream"
|
135 |
+
)
|
136 |
+
|
137 |
+
except Exception as e:
|
138 |
+
raise HTTPException(status_code=500, detail=f"Streaming generation failed: {str(e)}")
|
139 |
+
|
140 |
+
@app.get("/health")
|
141 |
+
async def health_check():
|
142 |
+
"""Health check endpoint."""
|
143 |
+
return {"status": "healthy"}
|
144 |
+
|
145 |
+
# Run the FastAPI app with uvicorn when this script is executed directly
|
146 |
+
if __name__ == "__main__":
|
147 |
+
import uvicorn
|
148 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|