--- library_name: transformers license: other base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B tags: - llama-factory - full - generated_from_trainer model-index: - name: ReasonFlux-F1-32B results: [] --- # ReasonFlux: Hierarchical LLM Reasoning via Scaling Thought Templates Revolutionary template-augmented reasoning paradigm enpowers a 32B model to outperform o1-mini and DeepSeek-R1 distilled models in reasoning tasks. | Task/Pass@1 | **ReasonFlux-F1-32B** | **ReasonFlux-Zero-32B** | **R1-Distill-32B** | **o1-mini** | **LIMO -32B** | **s1-32B** | | :------------- | :----------------: | :-------------: | :-------------------: | :-----------------: | :--------: | :--------: | | MATH500 | **96.0** | 91.2 | 94.3 | 90.0 | 90.6 | 93.0 | | AIME 2024 | **76.7** | 56.7 | 72.6 | 56.7 | 50.0 | 56.7 | | AIME 2025 | **53.3** | 37.2 | 46.67 | 50.8 | 37.2 | 49.3 | | GPQA-Diamond | **67.2** | 61.2 | 62.1 | 60.0 | 65.2 | 59.6 | # ReasonFlux-F1-32B > ReasonFlux-F1-32B is our finetuned SOTA-level reasoning LLM by leveraging the template-augmented reasoning trajectories from our [ReasonFlux-Zero](https://arxiv.org/abs/2502.06772). * Github Repository: [Gen-Verse/ReasonFlux](https://github.com/Gen-Verse/ReasonFlux) * Paper:[ReasonFlux: Hierarchical LLM Reasoning via Scaling Thought Templates](https://arxiv.org/abs/2502.06772) * Dataset: [Gen-Verse/ReasonFlux-F1-SFT](https://huggingface.co/datasets/Gen-Verse/ReasonFlux-F1-SFT) ## Evaluation We present the evaluation results of our ReasonFlux-F1-32B on challenging reasoning tasks including AIME2024,AIM2025,MATH500 and GPQA-Diamond. To make a fair comparison, we report the results of the LLMs on our evaluation scripts in [ReasonFlux-F1](https://github.com/Gen-Verse/ReasonFlux/tree/main/reasonflux-f1). | Model | AIME2024@pass1 | AIME2025@pass1 | MATH500@pass1 | GPQA@pass1 | | --------------------------------------- | :--------------: | :--------------: | :-------------: | :----------: | | QwQ-32B-Preview | 46.7 | 37.2 | 90.6 | 65.2 | | LIMO-32B | 56.3 | 44.5 | 94.8 | 58.1 | | s1-32B | 56.7 | 49.3 | 93.0 | 59.6 | | OpenThinker-32B | 66.0 | 53.3 | 94.8 | 60.1 | | R1-Distill-32B | 70.0 | 46.7 | 92.0 | 59.6 | | ReasonFlux-Zero-32B | 56.7 | 37.2 | 91.2 | 61.2 | | **ReasonFlux-F1-32B** | **76.7** | **53.3** | **96.0** | **67.2** | ## Quick start with VLLM ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = 'Gen-Verse/ReasonFlux-F1' model = LLM( model_id, tensor_parallel_size=8, ) tokenizer = AutoTokenizer.from_pretrained(model_id) sampling_params = SamplingParams( max_tokens=32768, ) # 2022 AIME I Problems/Problem 15 question = """Let \(x, y\), and \(z\) be positive real numbers satisfying the system of equations: \[ \begin{array}{c} \sqrt{2 x-x y}+\sqrt{2 y-x y}=1 \\ \sqrt{2 y-y z}+\sqrt{2 z-y z}=\sqrt{2} \\ \sqrt{2 z-z x}+\sqrt{2 x-z x}=\sqrt{3} . \end{array} \] Then \(\left[(1-x)(1-y)(1-z)\right]^{2}\) can be written as \(\frac{m}{n}\), where \(m\) and \(n\) are relatively prime positive integers. Find \(m+n\).""" ds_prompt="<|User|>\n" + question + "<|Assistant|>\n" output = model.generate(ds_prompt, sampling_params=sampling_params) print(output[0].outputs[0].text) ``` ## Citation ```bash @article{yang2025reasonflux, title={ReasonFlux: Hierarchical LLM Reasoning via Scaling Thought Templates}, author={Yang, Ling and Yu, Zhaochen and Cui, Bin and Wang, Mengdi}, journal={arXiv preprint arXiv:2502.06772}, year={2025} } ```