Update model files
Browse files- added_tokens.json +29 -0
- chat_template.jinja +85 -0
- config.json +41 -0
- configuration_sdar.py +205 -0
- generation_config.json +13 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +406 -0
- modeling_sdar.py +922 -0
- special_tokens_map.json +39 -0
- tokenization_qwen2.py +342 -0
- tokenization_qwen2_fast.py +131 -0
- tokenizer_config.json +255 -0
- vocab.json +0 -0
added_tokens.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|MASK|>": 151669,
|
9 |
+
"<|box_end|>": 151649,
|
10 |
+
"<|box_start|>": 151648,
|
11 |
+
"<|endoftext|>": 151643,
|
12 |
+
"<|file_sep|>": 151664,
|
13 |
+
"<|fim_middle|>": 151660,
|
14 |
+
"<|fim_pad|>": 151662,
|
15 |
+
"<|fim_prefix|>": 151659,
|
16 |
+
"<|fim_suffix|>": 151661,
|
17 |
+
"<|im_end|>": 151645,
|
18 |
+
"<|im_start|>": 151644,
|
19 |
+
"<|image_pad|>": 151655,
|
20 |
+
"<|object_ref_end|>": 151647,
|
21 |
+
"<|object_ref_start|>": 151646,
|
22 |
+
"<|quad_end|>": 151651,
|
23 |
+
"<|quad_start|>": 151650,
|
24 |
+
"<|repo_name|>": 151663,
|
25 |
+
"<|video_pad|>": 151656,
|
26 |
+
"<|vision_end|>": 151653,
|
27 |
+
"<|vision_pad|>": 151654,
|
28 |
+
"<|vision_start|>": 151652
|
29 |
+
}
|
chat_template.jinja
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0].role == 'system' %}
|
4 |
+
{{- messages[0].content + '\n\n' }}
|
5 |
+
{%- endif %}
|
6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
7 |
+
{%- for tool in tools %}
|
8 |
+
{{- "\n" }}
|
9 |
+
{{- tool | tojson }}
|
10 |
+
{%- endfor %}
|
11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
12 |
+
{%- else %}
|
13 |
+
{%- if messages[0].role == 'system' %}
|
14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
15 |
+
{%- endif %}
|
16 |
+
{%- endif %}
|
17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
18 |
+
{%- for message in messages[::-1] %}
|
19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
20 |
+
{%- if ns.multi_step_tool and message.role == "user" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
21 |
+
{%- set ns.multi_step_tool = false %}
|
22 |
+
{%- set ns.last_query_index = index %}
|
23 |
+
{%- endif %}
|
24 |
+
{%- endfor %}
|
25 |
+
{%- for message in messages %}
|
26 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
27 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
28 |
+
{%- elif message.role == "assistant" %}
|
29 |
+
{%- set content = message.content %}
|
30 |
+
{%- set reasoning_content = '' %}
|
31 |
+
{%- if message.reasoning_content is defined and message.reasoning_content is not none %}
|
32 |
+
{%- set reasoning_content = message.reasoning_content %}
|
33 |
+
{%- else %}
|
34 |
+
{%- if '</think>' in message.content %}
|
35 |
+
{%- set content = message.content.split('</think>')[-1].lstrip('\n') %}
|
36 |
+
{%- set reasoning_content = message.content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
37 |
+
{%- endif %}
|
38 |
+
{%- endif %}
|
39 |
+
{%- if loop.index0 > ns.last_query_index %}
|
40 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
41 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
42 |
+
{%- else %}
|
43 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
44 |
+
{%- endif %}
|
45 |
+
{%- else %}
|
46 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
47 |
+
{%- endif %}
|
48 |
+
{%- if message.tool_calls %}
|
49 |
+
{%- for tool_call in message.tool_calls %}
|
50 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
51 |
+
{{- '\n' }}
|
52 |
+
{%- endif %}
|
53 |
+
{%- if tool_call.function %}
|
54 |
+
{%- set tool_call = tool_call.function %}
|
55 |
+
{%- endif %}
|
56 |
+
{{- '<tool_call>\n{"name": "' }}
|
57 |
+
{{- tool_call.name }}
|
58 |
+
{{- '", "arguments": ' }}
|
59 |
+
{%- if tool_call.arguments is string %}
|
60 |
+
{{- tool_call.arguments }}
|
61 |
+
{%- else %}
|
62 |
+
{{- tool_call.arguments | tojson }}
|
63 |
+
{%- endif %}
|
64 |
+
{{- '}\n</tool_call>' }}
|
65 |
+
{%- endfor %}
|
66 |
+
{%- endif %}
|
67 |
+
{{- '<|im_end|>\n' }}
|
68 |
+
{%- elif message.role == "tool" %}
|
69 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
70 |
+
{{- '<|im_start|>user' }}
|
71 |
+
{%- endif %}
|
72 |
+
{{- '\n<tool_response>\n' }}
|
73 |
+
{{- message.content }}
|
74 |
+
{{- '\n</tool_response>' }}
|
75 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
76 |
+
{{- '<|im_end|>\n' }}
|
77 |
+
{%- endif %}
|
78 |
+
{%- endif %}
|
79 |
+
{%- endfor %}
|
80 |
+
{%- if add_generation_prompt %}
|
81 |
+
{{- '<|im_start|>assistant\n' }}
|
82 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
83 |
+
{{- '<think>\n\n</think>\n\n' }}
|
84 |
+
{%- endif %}
|
85 |
+
{%- endif %}
|
config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SDARForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_sdar.SDARConfig",
|
9 |
+
"AutoModel": "modeling_sdar.SDARModel",
|
10 |
+
"AutoModelForCausalLM": "modeling_sdar.SDARForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 151643,
|
13 |
+
"debug": false,
|
14 |
+
"eos_token_id": 151643,
|
15 |
+
"ep_size": 1,
|
16 |
+
"fuse_cross_entropy": false,
|
17 |
+
"head_dim": 128,
|
18 |
+
"hidden_act": "silu",
|
19 |
+
"hidden_size": 4096,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 12288,
|
22 |
+
"max_position_embeddings": 32768,
|
23 |
+
"max_window_layers": 36,
|
24 |
+
"micro_forward": false,
|
25 |
+
"model_type": "sdar",
|
26 |
+
"num_attention_heads": 32,
|
27 |
+
"num_hidden_layers": 36,
|
28 |
+
"num_key_value_heads": 8,
|
29 |
+
"rms_norm_eps": 1e-06,
|
30 |
+
"rope_scaling": null,
|
31 |
+
"rope_theta": 1000000,
|
32 |
+
"skip_checkpoint": false,
|
33 |
+
"sliding_window": null,
|
34 |
+
"tie_word_embeddings": false,
|
35 |
+
"torch_dtype": "bfloat16",
|
36 |
+
"transformers_version": "4.52.4",
|
37 |
+
"use_cache": false,
|
38 |
+
"use_deepep": false,
|
39 |
+
"use_sliding_window": false,
|
40 |
+
"vocab_size": 151936
|
41 |
+
}
|
configuration_sdar.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""SDAR model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class SDARConfig(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`SDARModel`]. It is used to instantiate a
|
28 |
+
SDAR model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
29 |
+
with the defaults will yield a similar configuration to that of
|
30 |
+
SDAR-1.7B [DiffuOpen/SDAR-1.7B-Chat](https://huggingface.co/DiffuOpen/SDAR-1.7B-Chat/).
|
31 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
32 |
+
documentation from [`PretrainedConfig`] for more information.
|
33 |
+
Args:
|
34 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
35 |
+
Vocabulary size of the SDAR model. Defines the number of different tokens that can be represented by the
|
36 |
+
`inputs_ids` passed when calling [`SDARModel`]
|
37 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
38 |
+
Dimension of the hidden representations.
|
39 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
40 |
+
Dimension of the MLP representations.
|
41 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
42 |
+
Number of hidden layers in the Transformer encoder.
|
43 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
44 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
45 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
46 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
47 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
48 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
49 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
50 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
51 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
52 |
+
head_dim (`int`, *optional*, defaults to 128):
|
53 |
+
The attention head dimension.
|
54 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
55 |
+
The non-linear activation function (function or string) in the decoder.
|
56 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
57 |
+
The maximum sequence length that this model might ever be used with.
|
58 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
59 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
60 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
61 |
+
The epsilon used by the rms normalization layers.
|
62 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
64 |
+
relevant if `config.is_decoder=True`.
|
65 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
66 |
+
Whether the model's input and output word embeddings should be tied.
|
67 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
68 |
+
The base period of the RoPE embeddings.
|
69 |
+
rope_scaling (`Dict`, *optional*):
|
70 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
71 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
72 |
+
accordingly.
|
73 |
+
Expected contents:
|
74 |
+
`rope_type` (`str`):
|
75 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
76 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
77 |
+
`factor` (`float`, *optional*):
|
78 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
79 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
80 |
+
original maximum pre-trained length.
|
81 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
82 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
83 |
+
pretraining.
|
84 |
+
`attention_factor` (`float`, *optional*):
|
85 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
86 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
87 |
+
`factor` field to infer the suggested value.
|
88 |
+
`beta_fast` (`float`, *optional*):
|
89 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
90 |
+
ramp function. If unspecified, it defaults to 32.
|
91 |
+
`beta_slow` (`float`, *optional*):
|
92 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
93 |
+
ramp function. If unspecified, it defaults to 1.
|
94 |
+
`short_factor` (`List[float]`, *optional*):
|
95 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
96 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
97 |
+
size divided by the number of attention heads divided by 2
|
98 |
+
`long_factor` (`List[float]`, *optional*):
|
99 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
100 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
101 |
+
size divided by the number of attention heads divided by 2
|
102 |
+
`low_freq_factor` (`float`, *optional*):
|
103 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
104 |
+
`high_freq_factor` (`float`, *optional*):
|
105 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
106 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
107 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
108 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
109 |
+
Whether to use sliding window attention.
|
110 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
111 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
112 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
113 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
114 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
115 |
+
The dropout ratio for the attention probabilities.
|
116 |
+
```python
|
117 |
+
>>> from transformers import SDARModel, SDARConfig
|
118 |
+
>>> # Initializing a SDAR style configuration
|
119 |
+
>>> configuration = SDARConfig()
|
120 |
+
>>> # Initializing a model from the SDAR-8B style configuration
|
121 |
+
>>> model = SDARModel(configuration)
|
122 |
+
>>> # Accessing the model configuration
|
123 |
+
>>> configuration = model.config
|
124 |
+
```"""
|
125 |
+
|
126 |
+
model_type = "sdar"
|
127 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
128 |
+
|
129 |
+
# Default tensor parallel plan for base model `SDAR`
|
130 |
+
base_model_tp_plan = {
|
131 |
+
"layers.*.self_attn.q_proj": "colwise",
|
132 |
+
"layers.*.self_attn.k_proj": "colwise",
|
133 |
+
"layers.*.self_attn.v_proj": "colwise",
|
134 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
135 |
+
"layers.*.mlp.gate_proj": "colwise",
|
136 |
+
"layers.*.mlp.up_proj": "colwise",
|
137 |
+
"layers.*.mlp.down_proj": "rowwise",
|
138 |
+
}
|
139 |
+
base_model_pp_plan = {
|
140 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
141 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
142 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
143 |
+
}
|
144 |
+
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
vocab_size=151936,
|
148 |
+
hidden_size=4096,
|
149 |
+
intermediate_size=22016,
|
150 |
+
num_hidden_layers=32,
|
151 |
+
num_attention_heads=32,
|
152 |
+
num_key_value_heads=32,
|
153 |
+
head_dim=128,
|
154 |
+
hidden_act="silu",
|
155 |
+
max_position_embeddings=32768,
|
156 |
+
initializer_range=0.02,
|
157 |
+
rms_norm_eps=1e-6,
|
158 |
+
use_cache=True,
|
159 |
+
tie_word_embeddings=False,
|
160 |
+
rope_theta=10000.0,
|
161 |
+
rope_scaling=None,
|
162 |
+
attention_bias=False,
|
163 |
+
use_sliding_window=False,
|
164 |
+
sliding_window=4096,
|
165 |
+
max_window_layers=28,
|
166 |
+
attention_dropout=0.0,
|
167 |
+
**kwargs,
|
168 |
+
):
|
169 |
+
self.vocab_size = vocab_size
|
170 |
+
self.max_position_embeddings = max_position_embeddings
|
171 |
+
self.hidden_size = hidden_size
|
172 |
+
self.intermediate_size = intermediate_size
|
173 |
+
self.num_hidden_layers = num_hidden_layers
|
174 |
+
self.num_attention_heads = num_attention_heads
|
175 |
+
self.use_sliding_window = use_sliding_window
|
176 |
+
self.sliding_window = sliding_window # we check `use_sliding_window` in the modeling code
|
177 |
+
self.max_window_layers = max_window_layers
|
178 |
+
|
179 |
+
# for backward compatibility
|
180 |
+
if num_key_value_heads is None:
|
181 |
+
num_key_value_heads = num_attention_heads
|
182 |
+
|
183 |
+
self.num_key_value_heads = num_key_value_heads
|
184 |
+
self.head_dim = head_dim
|
185 |
+
self.hidden_act = hidden_act
|
186 |
+
self.initializer_range = initializer_range
|
187 |
+
self.rms_norm_eps = rms_norm_eps
|
188 |
+
self.use_cache = use_cache
|
189 |
+
self.rope_theta = rope_theta
|
190 |
+
self.rope_scaling = rope_scaling
|
191 |
+
self.attention_bias = attention_bias
|
192 |
+
self.attention_dropout = attention_dropout
|
193 |
+
# Validate the correctness of rotary position embeddings parameters
|
194 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
195 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
196 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
197 |
+
rope_config_validation(self)
|
198 |
+
|
199 |
+
super().__init__(
|
200 |
+
tie_word_embeddings=tie_word_embeddings,
|
201 |
+
**kwargs,
|
202 |
+
)
|
203 |
+
|
204 |
+
|
205 |
+
__all__ = ["SDARConfig"]
|
generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"temperature": 0.6,
|
10 |
+
"top_k": 20,
|
11 |
+
"top_p": 0.95,
|
12 |
+
"transformers_version": "4.52.4"
|
13 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cbb5887f14e440c57e91667068ed4c677941bbd99091886d91152f7e0dd1d89
|
3 |
+
size 4902257696
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad5b74d1df10f158337bfed69c50cf267a502204e46ea03d17b5c0822f7ae69d
|
3 |
+
size 4915960368
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09681f433185fc84f1353e8b1545192af61a3a7656748c481416be80318dcb11
|
3 |
+
size 4983068496
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f225b227b82646858b3bcea829b0efc9fe589940059abd5dc1ad86db0ec7f93
|
3 |
+
size 1580230264
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16381470720
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
130 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
141 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
142 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
143 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
144 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
145 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
146 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
147 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
148 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
149 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
150 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
151 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
152 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
153 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
154 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
155 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
156 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
157 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
158 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
159 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
160 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
161 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
162 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
163 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
164 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
165 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
166 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
167 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
168 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
169 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
170 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
171 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
172 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
173 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
179 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
180 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
181 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
182 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
183 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
184 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
261 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
273 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
274 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
275 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
276 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
277 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
278 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
279 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
280 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
281 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
282 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
283 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
284 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
285 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
286 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
287 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
288 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
289 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
290 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
291 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
292 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
293 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
294 |
+
"model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
295 |
+
"model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
296 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
297 |
+
"model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
298 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
299 |
+
"model.layers.32.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
300 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
301 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
302 |
+
"model.layers.32.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
303 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
304 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
305 |
+
"model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
306 |
+
"model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
307 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
308 |
+
"model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
309 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
310 |
+
"model.layers.33.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
311 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
312 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
313 |
+
"model.layers.33.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
314 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
315 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
316 |
+
"model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
317 |
+
"model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
318 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
319 |
+
"model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
320 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
321 |
+
"model.layers.34.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
322 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
323 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
324 |
+
"model.layers.34.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
325 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
326 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
327 |
+
"model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
328 |
+
"model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
329 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
330 |
+
"model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
331 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
332 |
+
"model.layers.35.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
|
333 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
334 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
335 |
+
"model.layers.35.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
|
336 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
337 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
338 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
339 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
340 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
341 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
342 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
343 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
344 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
345 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
346 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
347 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
348 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
349 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
350 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
351 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
352 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
353 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
354 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
355 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
356 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
357 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
358 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
359 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
360 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
361 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
362 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
363 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
364 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
365 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
366 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
367 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
368 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
369 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
370 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
371 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
372 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
373 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
374 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
375 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
376 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
377 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
378 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
379 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
380 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
381 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
382 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
383 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
384 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
385 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
386 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
387 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
388 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
389 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
390 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
391 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
392 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
393 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
394 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
395 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
396 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
397 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
398 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
399 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
400 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
401 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
402 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
403 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
404 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
405 |
+
}
|
406 |
+
}
|
modeling_sdar.py
ADDED
@@ -0,0 +1,922 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is modified based on https://github.com/huggingface/transformers/blob/v4.52.4/src/transformers/models/qwen3/modeling_qwen3.py.
|
2 |
+
#
|
3 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
4 |
+
# This file was automatically generated from src/transformers/models/qwen3/modular_qwen3.py.
|
5 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
6 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
7 |
+
# modular_qwen3.py file directly. One of our CI enforces this.
|
8 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
9 |
+
# coding=utf-8
|
10 |
+
# Copyright 2025 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
11 |
+
#
|
12 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
13 |
+
# you may not use this file except in compliance with the License.
|
14 |
+
# You may obtain a copy of the License at
|
15 |
+
#
|
16 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
17 |
+
#
|
18 |
+
# Unless required by applicable law or agreed to in writing, software
|
19 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
20 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
21 |
+
# See the License for the specific language governing permissions and
|
22 |
+
# limitations under the License.
|
23 |
+
|
24 |
+
from typing import Callable, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import torch
|
27 |
+
from torch import nn
|
28 |
+
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
|
31 |
+
from transformers.generation import GenerationMixin
|
32 |
+
from transformers.integrations import use_kernel_forward_from_hub
|
33 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
34 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
35 |
+
from transformers.modeling_layers import GradientCheckpointingLayer
|
36 |
+
from transformers.modeling_outputs import (
|
37 |
+
BaseModelOutputWithPast,
|
38 |
+
CausalLMOutputWithPast,
|
39 |
+
QuestionAnsweringModelOutput,
|
40 |
+
SequenceClassifierOutputWithPast,
|
41 |
+
TokenClassifierOutput,
|
42 |
+
)
|
43 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
44 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
45 |
+
from transformers.processing_utils import Unpack
|
46 |
+
from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging
|
47 |
+
from .configuration_sdar import SDARConfig
|
48 |
+
|
49 |
+
from flash_attn.ops.triton.layer_norm import rms_norm_fn as flash_rms_norm
|
50 |
+
|
51 |
+
import torch.nn.functional as F
|
52 |
+
try:
|
53 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
54 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
55 |
+
except:
|
56 |
+
pass
|
57 |
+
|
58 |
+
try:
|
59 |
+
from liger_kernel.ops.swiglu import LigerSiLUMulFunction # noqa: F401
|
60 |
+
liger_kernel_is_available = True
|
61 |
+
except ImportError:
|
62 |
+
liger_kernel_is_available = False
|
63 |
+
|
64 |
+
|
65 |
+
if is_torch_flex_attn_available():
|
66 |
+
from torch.nn.attention.flex_attention import BlockMask, create_block_mask, flex_attention
|
67 |
+
from transformers.integrations.flex_attention import make_flex_block_causal_mask
|
68 |
+
|
69 |
+
|
70 |
+
logger = logging.get_logger(__name__)
|
71 |
+
|
72 |
+
|
73 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
74 |
+
class SDARRMSNorm(nn.Module):
|
75 |
+
def __init__(self, hidden_size, eps=1e-6):
|
76 |
+
"""
|
77 |
+
SDARRMSNorm is equivalent to T5LayerNorm
|
78 |
+
"""
|
79 |
+
super().__init__()
|
80 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
81 |
+
self.variance_epsilon = eps
|
82 |
+
|
83 |
+
def forward(self, hidden_states):
|
84 |
+
return flash_rms_norm(
|
85 |
+
hidden_states, weight=self.weight, bias=None, eps=self.variance_epsilon)
|
86 |
+
'''
|
87 |
+
input_dtype = hidden_states.dtype
|
88 |
+
hidden_states = hidden_states.to(torch.float32)
|
89 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
90 |
+
hidden_states = hidden_states * \
|
91 |
+
torch.rsqrt(variance + self.variance_epsilon)
|
92 |
+
return self.weight * hidden_states.to(input_dtype)
|
93 |
+
'''
|
94 |
+
|
95 |
+
def extra_repr(self):
|
96 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
97 |
+
|
98 |
+
|
99 |
+
class SDARMLP(nn.Module):
|
100 |
+
def __init__(self, config):
|
101 |
+
super().__init__()
|
102 |
+
self.config = config
|
103 |
+
self.hidden_size = config.hidden_size
|
104 |
+
self.intermediate_size = config.intermediate_size
|
105 |
+
self.gate_proj = nn.Linear(
|
106 |
+
self.hidden_size, self.intermediate_size, bias=False)
|
107 |
+
self.up_proj = nn.Linear(
|
108 |
+
self.hidden_size, self.intermediate_size, bias=False)
|
109 |
+
self.down_proj = nn.Linear(
|
110 |
+
self.intermediate_size, self.hidden_size, bias=False)
|
111 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
if liger_kernel_is_available:
|
115 |
+
return self.down_proj(LigerSiLUMulFunction.apply(self.gate_proj(x), self.up_proj(x)))
|
116 |
+
else:
|
117 |
+
down_proj = self.down_proj(self.act_fn(
|
118 |
+
self.gate_proj(x)) * self.up_proj(x))
|
119 |
+
return down_proj
|
120 |
+
|
121 |
+
|
122 |
+
def rotate_half(x):
|
123 |
+
"""Rotates half the hidden dims of the input."""
|
124 |
+
x1 = x[..., : x.shape[-1] // 2]
|
125 |
+
x2 = x[..., x.shape[-1] // 2:]
|
126 |
+
return torch.cat((-x2, x1), dim=-1)
|
127 |
+
|
128 |
+
|
129 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
130 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
131 |
+
Args:
|
132 |
+
q (`torch.Tensor`): The query tensor.
|
133 |
+
k (`torch.Tensor`): The key tensor.
|
134 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
135 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
136 |
+
position_ids (`torch.Tensor`, *optional*):
|
137 |
+
Deprecated and unused.
|
138 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
139 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
140 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
141 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
142 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
143 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
144 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
145 |
+
Returns:
|
146 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
147 |
+
"""
|
148 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
149 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
150 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
151 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
152 |
+
return q_embed, k_embed
|
153 |
+
|
154 |
+
|
155 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
156 |
+
"""
|
157 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
158 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
159 |
+
"""
|
160 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
161 |
+
if n_rep == 1:
|
162 |
+
return hidden_states
|
163 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
164 |
+
batch, num_key_value_heads, n_rep, slen, head_dim)
|
165 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
166 |
+
|
167 |
+
|
168 |
+
def eager_attention_forward(
|
169 |
+
module: nn.Module,
|
170 |
+
query: torch.Tensor,
|
171 |
+
key: torch.Tensor,
|
172 |
+
value: torch.Tensor,
|
173 |
+
attention_mask: Optional[torch.Tensor],
|
174 |
+
scaling: float,
|
175 |
+
dropout: float = 0.0,
|
176 |
+
**kwargs,
|
177 |
+
):
|
178 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
179 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
180 |
+
|
181 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
182 |
+
if attention_mask is not None:
|
183 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
184 |
+
attn_weights = attn_weights + causal_mask
|
185 |
+
|
186 |
+
attn_weights = nn.functional.softmax(
|
187 |
+
attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
188 |
+
attn_weights = nn.functional.dropout(
|
189 |
+
attn_weights, p=dropout, training=module.training)
|
190 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
191 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
192 |
+
|
193 |
+
return attn_output, attn_weights
|
194 |
+
|
195 |
+
|
196 |
+
class SDARAttention(nn.Module):
|
197 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
198 |
+
|
199 |
+
def __init__(self, config: SDARConfig, layer_idx: int):
|
200 |
+
super().__init__()
|
201 |
+
self.config = config
|
202 |
+
self.layer_idx = layer_idx
|
203 |
+
self.head_dim = getattr(
|
204 |
+
config, "head_dim", config.hidden_size // config.num_attention_heads)
|
205 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
206 |
+
self.scaling = self.head_dim**-0.5
|
207 |
+
self.attention_dropout = config.attention_dropout
|
208 |
+
self.is_causal = True
|
209 |
+
|
210 |
+
self.hidden_size = config.hidden_size
|
211 |
+
self.num_attention_heads = config.num_attention_heads
|
212 |
+
self.num_key_value_heads = config.num_key_value_heads
|
213 |
+
|
214 |
+
self.q_proj = nn.Linear(
|
215 |
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
216 |
+
)
|
217 |
+
self.k_proj = nn.Linear(
|
218 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
219 |
+
)
|
220 |
+
self.v_proj = nn.Linear(
|
221 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
222 |
+
)
|
223 |
+
self.o_proj = nn.Linear(
|
224 |
+
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
225 |
+
)
|
226 |
+
# unlike olmo, only on the head dim!
|
227 |
+
self.q_norm = SDARRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
228 |
+
# thus post q_norm does not need reshape
|
229 |
+
self.k_norm = SDARRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
230 |
+
self.sliding_window = config.sliding_window
|
231 |
+
if not (
|
232 |
+
self.config.use_sliding_window
|
233 |
+
and getattr(self.config, "sliding_window", None) is not None
|
234 |
+
and self.layer_idx >= self.config.max_window_layers
|
235 |
+
):
|
236 |
+
self.sliding_window = None
|
237 |
+
|
238 |
+
def forward(
|
239 |
+
self,
|
240 |
+
hidden_states: torch.Tensor,
|
241 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
242 |
+
attention_mask: Optional[torch.Tensor],
|
243 |
+
past_key_value: Optional[Cache] = None,
|
244 |
+
cache_position: Optional[torch.LongTensor] = None,
|
245 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
246 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
247 |
+
input_shape = hidden_states.shape[:-1]
|
248 |
+
bsz, q_len = input_shape
|
249 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
250 |
+
|
251 |
+
query_states = self.q_norm(self.q_proj(
|
252 |
+
hidden_states).view(hidden_shape)).transpose(1, 2)
|
253 |
+
key_states = self.k_norm(self.k_proj(
|
254 |
+
hidden_states).view(hidden_shape)).transpose(1, 2)
|
255 |
+
value_states = self.v_proj(hidden_states).view(
|
256 |
+
hidden_shape).transpose(1, 2)
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
cos, sin = position_embeddings
|
261 |
+
query_states, key_states = apply_rotary_pos_emb(
|
262 |
+
query_states, key_states, cos, sin)
|
263 |
+
|
264 |
+
if past_key_value is not None and kwargs.get("store_kv", False):
|
265 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
266 |
+
key_states, value_states = past_key_value.update(
|
267 |
+
key_states, value_states, self.layer_idx)
|
268 |
+
elif past_key_value is not None and not kwargs.get("store_kv", False) and len(past_key_value) > self.layer_idx:
|
269 |
+
# only retrive, do not store kv
|
270 |
+
past_key_states, past_value_states = past_key_value[self.layer_idx]
|
271 |
+
key_states = torch.cat(
|
272 |
+
[past_key_states, key_states], dim=-2)
|
273 |
+
value_states = torch.cat(
|
274 |
+
[past_value_states, value_states], dim=-2)
|
275 |
+
|
276 |
+
'''
|
277 |
+
attention_mask = attention_mask.bool() if attention_mask is not None else None
|
278 |
+
if torch.all(attention_mask): # decoding
|
279 |
+
query_states = query_states.transpose(1, 2)
|
280 |
+
key_states = key_states.transpose(1, 2)
|
281 |
+
value_states = value_states.transpose(1, 2)
|
282 |
+
attn_output = flash_attn_func(
|
283 |
+
query_states,
|
284 |
+
key_states,
|
285 |
+
value_states,
|
286 |
+
causal=False,
|
287 |
+
softmax_scale=self.scaling
|
288 |
+
)
|
289 |
+
|
290 |
+
else: # prefilling
|
291 |
+
attn_output = F.scaled_dot_product_attention(
|
292 |
+
query=query_states,
|
293 |
+
key=key_states,
|
294 |
+
value=value_states,
|
295 |
+
attn_mask=attention_mask,
|
296 |
+
is_causal=False,
|
297 |
+
scale=self.scaling,
|
298 |
+
enable_gqa=True
|
299 |
+
)
|
300 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
301 |
+
'''
|
302 |
+
|
303 |
+
#print(query_states.shape, key_states.shape, value_states.shape)
|
304 |
+
|
305 |
+
# --- After RoPE and KV-cache handling, expand KV to all heads ---
|
306 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups) # [B, H, K, D]
|
307 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups) # [B, H, K, D]
|
308 |
+
|
309 |
+
# --- Convert a 0/1 or bool 4D mask into an *additive* mask, and align to [B, H, Q, K] ---
|
310 |
+
attn_mask = None
|
311 |
+
if attention_mask is not None:
|
312 |
+
k_len = key_states.shape[-2]
|
313 |
+
am = attention_mask
|
314 |
+
# Support either 2D [B, K] or 4D [B, 1/H, Q, K]
|
315 |
+
if am.dim() == 2:
|
316 |
+
am = am[:, None, None, :k_len] # -> [B,1,1,K]
|
317 |
+
else:
|
318 |
+
am = am[:, :, :, :k_len] # -> [B,1/H,Q,K]
|
319 |
+
|
320 |
+
finfo_min = torch.finfo(query_states.dtype).min
|
321 |
+
# 0/1 or bool -> float additive mask: 1->0, 0->-inf
|
322 |
+
if am.dtype == torch.bool:
|
323 |
+
zero = torch.zeros((), dtype=query_states.dtype, device=am.device)
|
324 |
+
neginf = torch.full((), finfo_min, dtype=query_states.dtype, device=am.device)
|
325 |
+
am = torch.where(am, zero, neginf)
|
326 |
+
else:
|
327 |
+
# For 0/1 float masks: values > 0 are treated as visible
|
328 |
+
am = am.to(query_states.dtype)
|
329 |
+
am = torch.where(am > 0, torch.zeros_like(am), torch.full_like(am, finfo_min))
|
330 |
+
|
331 |
+
# Expand to all heads
|
332 |
+
#if am.shape[1] == 1 and self.num_attention_heads > 1:
|
333 |
+
# am = am.expand(am.shape[0], self.num_attention_heads, am.shape[2], am.shape[3])
|
334 |
+
|
335 |
+
#attn_mask = am.contiguous()
|
336 |
+
attn_mask = am
|
337 |
+
|
338 |
+
|
339 |
+
bsz, q_len = input_shape
|
340 |
+
|
341 |
+
if q_len == 1 and past_key_value is not None:
|
342 |
+
# --- Decoding: flash-attn ---
|
343 |
+
q = query_states.transpose(1, 2) # [B,Q,H,D]
|
344 |
+
k = key_states.transpose(1, 2)
|
345 |
+
v = value_states.transpose(1, 2)
|
346 |
+
attn_output = flash_attn_func(
|
347 |
+
q, k, v,
|
348 |
+
causal=True, # For decoding, explicitly set causal=True
|
349 |
+
softmax_scale=self.scaling
|
350 |
+
)
|
351 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
352 |
+
else:
|
353 |
+
attn_output = F.scaled_dot_product_attention(
|
354 |
+
query=query_states, # [B,H,Q,D]
|
355 |
+
key=key_states, # [B,H,K,D]
|
356 |
+
value=value_states, # [B,H,K,D]
|
357 |
+
attn_mask=attn_mask, # float additive mask
|
358 |
+
is_causal=False, # All constraints are already encoded in the mask
|
359 |
+
scale=self.scaling,
|
360 |
+
)
|
361 |
+
attn_output = attn_output.transpose(1, 2).contiguous() # -> [B,Q,H,D]
|
362 |
+
|
363 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
364 |
+
attn_output = self.o_proj(attn_output)
|
365 |
+
return attn_output, None # , attn_weights
|
366 |
+
|
367 |
+
|
368 |
+
class SDARDecoderLayer(GradientCheckpointingLayer):
|
369 |
+
def __init__(self, config: SDARConfig, layer_idx: int):
|
370 |
+
super().__init__()
|
371 |
+
self.hidden_size = config.hidden_size
|
372 |
+
self.self_attn = SDARAttention(config=config, layer_idx=layer_idx)
|
373 |
+
self.mlp = SDARMLP(config)
|
374 |
+
self.input_layernorm = SDARRMSNorm(
|
375 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
376 |
+
self.post_attention_layernorm = SDARRMSNorm(
|
377 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
378 |
+
if (
|
379 |
+
config.sliding_window and config._attn_implementation != "flash_attention_2"
|
380 |
+
): # diff with Llama is this warning
|
381 |
+
logger.warning_once(
|
382 |
+
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
383 |
+
"unexpected results may be encountered."
|
384 |
+
)
|
385 |
+
|
386 |
+
def forward(
|
387 |
+
self,
|
388 |
+
hidden_states: torch.Tensor,
|
389 |
+
attention_mask: Optional[torch.Tensor] = None,
|
390 |
+
position_ids: Optional[torch.LongTensor] = None,
|
391 |
+
past_key_value: Optional[Cache] = None,
|
392 |
+
output_attentions: Optional[bool] = False,
|
393 |
+
use_cache: Optional[bool] = False,
|
394 |
+
store_kv: Optional[bool] = False,
|
395 |
+
cache_position: Optional[torch.LongTensor] = None,
|
396 |
+
# necessary, but kept here for BC
|
397 |
+
position_embeddings: Optional[Tuple[torch.Tensor,
|
398 |
+
torch.Tensor]] = None,
|
399 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
400 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
401 |
+
residual = hidden_states
|
402 |
+
hidden_states = self.input_layernorm(hidden_states)
|
403 |
+
|
404 |
+
# Self Attention
|
405 |
+
hidden_states, self_attn_weights = self.self_attn(
|
406 |
+
hidden_states=hidden_states,
|
407 |
+
attention_mask=attention_mask,
|
408 |
+
position_ids=position_ids,
|
409 |
+
past_key_value=past_key_value,
|
410 |
+
output_attentions=output_attentions,
|
411 |
+
use_cache=use_cache,
|
412 |
+
store_kv=store_kv,
|
413 |
+
cache_position=cache_position,
|
414 |
+
position_embeddings=position_embeddings,
|
415 |
+
**kwargs,
|
416 |
+
)
|
417 |
+
hidden_states = residual + hidden_states
|
418 |
+
|
419 |
+
# Fully Connected
|
420 |
+
residual = hidden_states
|
421 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
422 |
+
hidden_states = self.mlp(hidden_states)
|
423 |
+
hidden_states = residual + hidden_states
|
424 |
+
|
425 |
+
outputs = (hidden_states,)
|
426 |
+
if output_attentions:
|
427 |
+
outputs += (self_attn_weights,)
|
428 |
+
|
429 |
+
return outputs
|
430 |
+
|
431 |
+
|
432 |
+
@auto_docstring
|
433 |
+
class SDARPreTrainedModel(PreTrainedModel):
|
434 |
+
config_class = SDARConfig
|
435 |
+
base_model_prefix = "model"
|
436 |
+
supports_gradient_checkpointing = True
|
437 |
+
_no_split_modules = ["SDARDecoderLayer"]
|
438 |
+
_skip_keys_device_placement = ["past_key_values"]
|
439 |
+
_supports_flash_attn_2 = True
|
440 |
+
_supports_sdpa = True
|
441 |
+
_supports_flex_attn = True
|
442 |
+
_supports_cache_class = True
|
443 |
+
_supports_quantized_cache = True
|
444 |
+
_supports_static_cache = True
|
445 |
+
_supports_attention_backend = True
|
446 |
+
|
447 |
+
def _init_weights(self, module):
|
448 |
+
std = self.config.initializer_range
|
449 |
+
if isinstance(module, nn.Linear):
|
450 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
451 |
+
if module.bias is not None:
|
452 |
+
module.bias.data.zero_()
|
453 |
+
elif isinstance(module, nn.Embedding):
|
454 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
455 |
+
if module.padding_idx is not None:
|
456 |
+
module.weight.data[module.padding_idx].zero_()
|
457 |
+
elif isinstance(module, SDARRMSNorm):
|
458 |
+
module.weight.data.fill_(1.0)
|
459 |
+
|
460 |
+
|
461 |
+
class SDARRotaryEmbedding(nn.Module):
|
462 |
+
def __init__(self, config: SDARConfig, device=None):
|
463 |
+
super().__init__()
|
464 |
+
# BC: "rope_type" was originally "type"
|
465 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
466 |
+
self.rope_type = config.rope_scaling.get(
|
467 |
+
"rope_type", config.rope_scaling.get("type"))
|
468 |
+
else:
|
469 |
+
self.rope_type = "default"
|
470 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
471 |
+
self.original_max_seq_len = config.max_position_embeddings
|
472 |
+
|
473 |
+
self.config = config
|
474 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
475 |
+
|
476 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
477 |
+
self.config, device)
|
478 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
479 |
+
self.original_inv_freq = self.inv_freq
|
480 |
+
|
481 |
+
@torch.no_grad()
|
482 |
+
# power user: used with advanced RoPE types (e.g. dynamic rope)
|
483 |
+
@dynamic_rope_update
|
484 |
+
def forward(self, x, position_ids):
|
485 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(
|
486 |
+
position_ids.shape[0], -1, 1).to(x.device)
|
487 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
488 |
+
|
489 |
+
device_type = x.device.type if isinstance(
|
490 |
+
x.device.type, str) and x.device.type != "mps" else "cpu"
|
491 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
492 |
+
freqs = (inv_freq_expanded.float() @
|
493 |
+
position_ids_expanded.float()).transpose(1, 2)
|
494 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
495 |
+
cos = emb.cos() * self.attention_scaling
|
496 |
+
sin = emb.sin() * self.attention_scaling
|
497 |
+
|
498 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
499 |
+
|
500 |
+
|
501 |
+
@auto_docstring
|
502 |
+
class SDARModel(SDARPreTrainedModel):
|
503 |
+
def __init__(self, config: SDARConfig):
|
504 |
+
super().__init__(config)
|
505 |
+
self.padding_idx = config.pad_token_id
|
506 |
+
self.vocab_size = config.vocab_size
|
507 |
+
|
508 |
+
self.embed_tokens = nn.Embedding(
|
509 |
+
config.vocab_size, config.hidden_size, self.padding_idx)
|
510 |
+
self.layers = nn.ModuleList(
|
511 |
+
[SDARDecoderLayer(config, layer_idx)
|
512 |
+
for layer_idx in range(config.num_hidden_layers)]
|
513 |
+
)
|
514 |
+
self.norm = SDARRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
515 |
+
self.rotary_emb = SDARRotaryEmbedding(config=config)
|
516 |
+
self.gradient_checkpointing = False
|
517 |
+
|
518 |
+
# Initialize weights and apply final processing
|
519 |
+
self.post_init()
|
520 |
+
|
521 |
+
def get_input_embeddings(self):
|
522 |
+
return self.embed_tokens
|
523 |
+
|
524 |
+
def set_input_embeddings(self, value):
|
525 |
+
self.embed_tokens = value
|
526 |
+
|
527 |
+
@can_return_tuple
|
528 |
+
@auto_docstring
|
529 |
+
def forward(
|
530 |
+
self,
|
531 |
+
input_ids: Optional[torch.LongTensor] = None,
|
532 |
+
attention_mask: Optional[torch.Tensor] = None,
|
533 |
+
position_ids: Optional[torch.LongTensor] = None,
|
534 |
+
past_key_values: Optional[Cache] = None,
|
535 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
536 |
+
use_cache: Optional[bool] = None,
|
537 |
+
store_kv: Optional[bool] = None,
|
538 |
+
output_attentions: Optional[bool] = None,
|
539 |
+
output_hidden_states: Optional[bool] = None,
|
540 |
+
cache_position: Optional[torch.LongTensor] = None,
|
541 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
542 |
+
) -> BaseModelOutputWithPast:
|
543 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
544 |
+
output_hidden_states = (
|
545 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
546 |
+
)
|
547 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
548 |
+
|
549 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
550 |
+
raise ValueError(
|
551 |
+
"You must specify exactly one of input_ids or inputs_embeds")
|
552 |
+
|
553 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
554 |
+
logger.warning_once(
|
555 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
556 |
+
)
|
557 |
+
use_cache = False
|
558 |
+
|
559 |
+
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
|
560 |
+
if not isinstance(past_key_values, (type(None), Cache)):
|
561 |
+
raise ValueError(
|
562 |
+
"The `past_key_values` should be either a `Cache` object or `None`.")
|
563 |
+
|
564 |
+
if inputs_embeds is None:
|
565 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
566 |
+
|
567 |
+
if use_cache and past_key_values is None:
|
568 |
+
past_key_values = DynamicCache()
|
569 |
+
|
570 |
+
if cache_position is None:
|
571 |
+
past_seen_tokens = past_key_values.get_seq_length(
|
572 |
+
) if past_key_values is not None else 0
|
573 |
+
cache_position = torch.arange(
|
574 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
575 |
+
)
|
576 |
+
|
577 |
+
if position_ids is None:
|
578 |
+
position_ids = cache_position.unsqueeze(0)
|
579 |
+
|
580 |
+
# causal_mask = self._update_causal_mask(
|
581 |
+
# attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
582 |
+
# )
|
583 |
+
|
584 |
+
hidden_states = inputs_embeds
|
585 |
+
|
586 |
+
# create position embeddings to be shared across the decoder layers
|
587 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
588 |
+
|
589 |
+
# decoder layers
|
590 |
+
all_hidden_states = () if output_hidden_states else None
|
591 |
+
all_self_attns = () if output_attentions else None
|
592 |
+
|
593 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
594 |
+
if output_hidden_states:
|
595 |
+
all_hidden_states += (hidden_states,)
|
596 |
+
|
597 |
+
layer_outputs = decoder_layer(
|
598 |
+
hidden_states,
|
599 |
+
attention_mask=attention_mask,
|
600 |
+
position_ids=position_ids,
|
601 |
+
past_key_value=past_key_values,
|
602 |
+
output_attentions=output_attentions,
|
603 |
+
use_cache=use_cache,
|
604 |
+
store_kv=store_kv,
|
605 |
+
cache_position=cache_position,
|
606 |
+
position_embeddings=position_embeddings,
|
607 |
+
**flash_attn_kwargs,
|
608 |
+
)
|
609 |
+
|
610 |
+
hidden_states = layer_outputs[0]
|
611 |
+
|
612 |
+
if output_attentions:
|
613 |
+
all_self_attns += (layer_outputs[1],)
|
614 |
+
|
615 |
+
hidden_states = self.norm(hidden_states)
|
616 |
+
|
617 |
+
# add hidden states from the last decoder layer
|
618 |
+
if output_hidden_states:
|
619 |
+
all_hidden_states += (hidden_states,)
|
620 |
+
|
621 |
+
return BaseModelOutputWithPast(
|
622 |
+
last_hidden_state=hidden_states,
|
623 |
+
past_key_values=past_key_values if use_cache else None,
|
624 |
+
hidden_states=all_hidden_states,
|
625 |
+
attentions=all_self_attns,
|
626 |
+
)
|
627 |
+
|
628 |
+
def _update_causal_mask(
|
629 |
+
self,
|
630 |
+
attention_mask: Union[torch.Tensor, "BlockMask"],
|
631 |
+
input_tensor: torch.Tensor,
|
632 |
+
cache_position: torch.Tensor,
|
633 |
+
past_key_values: Cache,
|
634 |
+
output_attentions: bool = False,
|
635 |
+
):
|
636 |
+
if self.config._attn_implementation == "flash_attention_2":
|
637 |
+
if attention_mask is not None and past_key_values is not None:
|
638 |
+
is_padding_right = attention_mask[:, -
|
639 |
+
1].sum().item() != input_tensor.size()[0]
|
640 |
+
if is_padding_right:
|
641 |
+
raise ValueError(
|
642 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
643 |
+
" this may lead to unexpected behaviour for Flash Attention version of Qwen3. Make sure to "
|
644 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
645 |
+
)
|
646 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
647 |
+
return attention_mask
|
648 |
+
return None
|
649 |
+
if self.config._attn_implementation == "flex_attention":
|
650 |
+
if isinstance(attention_mask, torch.Tensor):
|
651 |
+
seq_len_q, seq_len_kv = attention_mask.shape
|
652 |
+
assert seq_len_q == seq_len_kv, f"got {attention_mask.shape=}"
|
653 |
+
attention_mask = create_block_mask(
|
654 |
+
# 2d bool tensor, shape: [2*seqlen, 2*seqlen]
|
655 |
+
lambda b, h, q_idx, kv_idx: attention_mask[q_idx, kv_idx],
|
656 |
+
B=None, H=None, Q_LEN=seq_len_q, KV_LEN=seq_len_kv,
|
657 |
+
)
|
658 |
+
else:
|
659 |
+
# Here we pass in flex mask computed externally
|
660 |
+
assert isinstance(attention_mask, BlockMask)
|
661 |
+
return attention_mask
|
662 |
+
|
663 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
664 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
665 |
+
# to infer the attention mask.
|
666 |
+
past_seen_tokens = past_key_values.get_seq_length(
|
667 |
+
) if past_key_values is not None else 0
|
668 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
669 |
+
using_sliding_window_cache = isinstance(
|
670 |
+
past_key_values, SlidingWindowCache)
|
671 |
+
|
672 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
673 |
+
if (
|
674 |
+
self.config._attn_implementation == "sdpa"
|
675 |
+
and not (using_static_cache or using_sliding_window_cache)
|
676 |
+
and not output_attentions
|
677 |
+
):
|
678 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
679 |
+
attention_mask,
|
680 |
+
inputs_embeds=input_tensor,
|
681 |
+
past_key_values_length=past_seen_tokens,
|
682 |
+
sliding_window=self.config.sliding_window,
|
683 |
+
is_training=self.training,
|
684 |
+
):
|
685 |
+
return None
|
686 |
+
|
687 |
+
dtype = input_tensor.dtype
|
688 |
+
min_dtype = torch.finfo(dtype).min
|
689 |
+
sequence_length = input_tensor.shape[1]
|
690 |
+
# SlidingWindowCache or StaticCache
|
691 |
+
if using_sliding_window_cache or using_static_cache:
|
692 |
+
target_length = past_key_values.get_max_cache_shape()
|
693 |
+
# DynamicCache or no cache
|
694 |
+
else:
|
695 |
+
target_length = (
|
696 |
+
attention_mask.shape[-1]
|
697 |
+
if isinstance(attention_mask, torch.Tensor)
|
698 |
+
else past_seen_tokens + sequence_length + 1
|
699 |
+
)
|
700 |
+
|
701 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
702 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
703 |
+
attention_mask,
|
704 |
+
sequence_length=sequence_length,
|
705 |
+
target_length=target_length,
|
706 |
+
dtype=dtype,
|
707 |
+
cache_position=cache_position,
|
708 |
+
batch_size=input_tensor.shape[0],
|
709 |
+
config=self.config,
|
710 |
+
past_key_values=past_key_values,
|
711 |
+
)
|
712 |
+
|
713 |
+
if (
|
714 |
+
self.config._attn_implementation == "sdpa"
|
715 |
+
and attention_mask is not None
|
716 |
+
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
717 |
+
and not output_attentions
|
718 |
+
):
|
719 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
720 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
721 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
722 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(
|
723 |
+
causal_mask, min_dtype)
|
724 |
+
|
725 |
+
return causal_mask
|
726 |
+
|
727 |
+
@staticmethod
|
728 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
729 |
+
attention_mask: torch.Tensor,
|
730 |
+
sequence_length: int,
|
731 |
+
target_length: int,
|
732 |
+
dtype: torch.dtype,
|
733 |
+
cache_position: torch.Tensor,
|
734 |
+
batch_size: int,
|
735 |
+
config: SDARConfig,
|
736 |
+
past_key_values: Cache,
|
737 |
+
):
|
738 |
+
"""
|
739 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
740 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
741 |
+
Args:
|
742 |
+
attention_mask (`torch.Tensor`):
|
743 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
744 |
+
sequence_length (`int`):
|
745 |
+
The sequence length being processed.
|
746 |
+
target_length (`int`):
|
747 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
748 |
+
dtype (`torch.dtype`):
|
749 |
+
The dtype to use for the 4D attention mask.
|
750 |
+
cache_position (`torch.Tensor`):
|
751 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
752 |
+
batch_size (`torch.Tensor`):
|
753 |
+
Batch size.
|
754 |
+
config (`SDARConfig`):
|
755 |
+
The model's configuration class
|
756 |
+
past_key_values (`Cache`):
|
757 |
+
The cache class that is being used currently to generate
|
758 |
+
"""
|
759 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
760 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
761 |
+
causal_mask = attention_mask
|
762 |
+
else:
|
763 |
+
min_dtype = torch.finfo(dtype).min
|
764 |
+
causal_mask = torch.full(
|
765 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
766 |
+
)
|
767 |
+
diagonal_attend_mask = torch.arange(target_length, device=cache_position.device) > cache_position.reshape(
|
768 |
+
-1, 1
|
769 |
+
)
|
770 |
+
text_config = config.get_text_config()
|
771 |
+
if getattr(text_config, "use_sliding_window", True) and text_config.sliding_window is not None:
|
772 |
+
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
|
773 |
+
# the check is needed to verify is current checkpoint was trained with sliding window or not
|
774 |
+
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
|
775 |
+
sliding_attend_mask = torch.arange(target_length, device=cache_position.device) <= (
|
776 |
+
cache_position.reshape(-1, 1) -
|
777 |
+
text_config.sliding_window
|
778 |
+
)
|
779 |
+
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
|
780 |
+
causal_mask *= diagonal_attend_mask
|
781 |
+
causal_mask = causal_mask[None, None,
|
782 |
+
:, :].expand(batch_size, 1, -1, -1)
|
783 |
+
if attention_mask is not None:
|
784 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
785 |
+
if attention_mask.shape[-1] > target_length:
|
786 |
+
attention_mask = attention_mask[:, :target_length]
|
787 |
+
mask_length = attention_mask.shape[-1]
|
788 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
789 |
+
causal_mask.device
|
790 |
+
)
|
791 |
+
padding_mask = padding_mask == 0
|
792 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
793 |
+
padding_mask, min_dtype
|
794 |
+
)
|
795 |
+
return causal_mask
|
796 |
+
|
797 |
+
|
798 |
+
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs):
|
799 |
+
...
|
800 |
+
|
801 |
+
|
802 |
+
@auto_docstring
|
803 |
+
class SDARForCausalLM(SDARPreTrainedModel, GenerationMixin):
|
804 |
+
_tied_weights_keys = ["lm_head.weight"]
|
805 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
806 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
807 |
+
|
808 |
+
def __init__(self, config):
|
809 |
+
super().__init__(config)
|
810 |
+
self.model = SDARModel(config)
|
811 |
+
self.vocab_size = config.vocab_size
|
812 |
+
self.lm_head = nn.Linear(
|
813 |
+
config.hidden_size, config.vocab_size, bias=False)
|
814 |
+
|
815 |
+
# Initialize weights and apply final processing
|
816 |
+
self.post_init()
|
817 |
+
|
818 |
+
def get_input_embeddings(self):
|
819 |
+
return self.model.embed_tokens
|
820 |
+
|
821 |
+
def set_input_embeddings(self, value):
|
822 |
+
self.model.embed_tokens = value
|
823 |
+
|
824 |
+
def get_output_embeddings(self):
|
825 |
+
return self.lm_head
|
826 |
+
|
827 |
+
def set_output_embeddings(self, new_embeddings):
|
828 |
+
self.lm_head = new_embeddings
|
829 |
+
|
830 |
+
def set_decoder(self, decoder):
|
831 |
+
self.model = decoder
|
832 |
+
|
833 |
+
def get_decoder(self):
|
834 |
+
return self.model
|
835 |
+
|
836 |
+
@can_return_tuple
|
837 |
+
@auto_docstring
|
838 |
+
def forward(
|
839 |
+
self,
|
840 |
+
input_ids: Optional[torch.LongTensor] = None,
|
841 |
+
attention_mask: Optional[torch.Tensor] = None,
|
842 |
+
position_ids: Optional[torch.LongTensor] = None,
|
843 |
+
past_key_values: Optional[Cache] = None,
|
844 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
845 |
+
labels: Optional[torch.LongTensor] = None,
|
846 |
+
use_cache: Optional[bool] = None,
|
847 |
+
output_attentions: Optional[bool] = None,
|
848 |
+
output_hidden_states: Optional[bool] = None,
|
849 |
+
cache_position: Optional[torch.LongTensor] = None,
|
850 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
851 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
852 |
+
) -> CausalLMOutputWithPast:
|
853 |
+
r"""
|
854 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
855 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
856 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
857 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
858 |
+
Example:
|
859 |
+
```python
|
860 |
+
>>> from transformers import AutoTokenizer, SDARForCausalLM
|
861 |
+
>>> model = SDARForCausalLM.from_pretrained("DiffuOpen/SDAR-1.7B-Chat")
|
862 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("DiffuOpen/SDAR-1.7B-Chat")
|
863 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
864 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
865 |
+
>>> # Generate
|
866 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
867 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
868 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
869 |
+
```"""
|
870 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
871 |
+
output_hidden_states = (
|
872 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
873 |
+
)
|
874 |
+
|
875 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
876 |
+
outputs: BaseModelOutputWithPast = self.model(
|
877 |
+
input_ids=input_ids,
|
878 |
+
attention_mask=attention_mask,
|
879 |
+
position_ids=position_ids,
|
880 |
+
past_key_values=past_key_values,
|
881 |
+
inputs_embeds=inputs_embeds,
|
882 |
+
use_cache=use_cache,
|
883 |
+
output_attentions=output_attentions,
|
884 |
+
output_hidden_states=output_hidden_states,
|
885 |
+
cache_position=cache_position,
|
886 |
+
**kwargs,
|
887 |
+
)
|
888 |
+
|
889 |
+
hidden_states = outputs.last_hidden_state
|
890 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
891 |
+
slice_indices = slice(-logits_to_keep,
|
892 |
+
None) if isinstance(logits_to_keep, int) else logits_to_keep
|
893 |
+
hidden_states = hidden_states[:, slice_indices, :].contiguous()
|
894 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
895 |
+
if fuse_linear_and_cross_entropy:
|
896 |
+
# When using fused_linear_ce_loss, we do not compute the whole logits on HBM
|
897 |
+
logits = None
|
898 |
+
else:
|
899 |
+
logits = self.lm_head(hidden_states)
|
900 |
+
|
901 |
+
loss = None
|
902 |
+
if labels is not None:
|
903 |
+
# FusedLinearCrossEntropyLoss will be implemented by monkey patch when training
|
904 |
+
# We don't use it when inferencing
|
905 |
+
loss_fct = nn.CrossEntropyLoss() # nn.CE
|
906 |
+
loss = loss_fct(
|
907 |
+
logits.view(-1, self.config.vocab_size), labels.view(-1))
|
908 |
+
|
909 |
+
return CausalLMOutputWithPast(
|
910 |
+
loss=loss,
|
911 |
+
logits=logits,
|
912 |
+
past_key_values=outputs.past_key_values,
|
913 |
+
hidden_states=outputs.hidden_states,
|
914 |
+
attentions=outputs.attentions,
|
915 |
+
)
|
916 |
+
|
917 |
+
|
918 |
+
__all__ = [
|
919 |
+
"SDARForCausalLM",
|
920 |
+
"SDARModel",
|
921 |
+
"SDARPreTrainedModel",
|
922 |
+
]
|
special_tokens_map.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>",
|
16 |
+
"<|MASK|>"
|
17 |
+
],
|
18 |
+
"eos_token": {
|
19 |
+
"content": "<|endoftext|>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
},
|
25 |
+
"mask_token": {
|
26 |
+
"content": "<|MASK|>",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": false
|
31 |
+
},
|
32 |
+
"pad_token": {
|
33 |
+
"content": "<|endoftext|>",
|
34 |
+
"lstrip": false,
|
35 |
+
"normalized": false,
|
36 |
+
"rstrip": false,
|
37 |
+
"single_word": false
|
38 |
+
}
|
39 |
+
}
|
tokenization_qwen2.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for Qwen2."""
|
16 |
+
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
import unicodedata
|
20 |
+
from functools import lru_cache
|
21 |
+
from typing import Optional, Tuple
|
22 |
+
|
23 |
+
import regex as re
|
24 |
+
|
25 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
26 |
+
from transformers.utils import logging
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
VOCAB_FILES_NAMES = {
|
32 |
+
"vocab_file": "vocab.json",
|
33 |
+
"merges_file": "merges.txt",
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768}
|
38 |
+
|
39 |
+
PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
40 |
+
|
41 |
+
|
42 |
+
@lru_cache()
|
43 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
|
44 |
+
def bytes_to_unicode():
|
45 |
+
"""
|
46 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
47 |
+
characters the bpe code barfs on.
|
48 |
+
|
49 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
50 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
51 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
52 |
+
tables between utf-8 bytes and unicode strings.
|
53 |
+
"""
|
54 |
+
bs = (
|
55 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
56 |
+
)
|
57 |
+
cs = bs[:]
|
58 |
+
n = 0
|
59 |
+
for b in range(2**8):
|
60 |
+
if b not in bs:
|
61 |
+
bs.append(b)
|
62 |
+
cs.append(2**8 + n)
|
63 |
+
n += 1
|
64 |
+
cs = [chr(n) for n in cs]
|
65 |
+
return dict(zip(bs, cs))
|
66 |
+
|
67 |
+
|
68 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
|
69 |
+
def get_pairs(word):
|
70 |
+
"""
|
71 |
+
Return set of symbol pairs in a word.
|
72 |
+
|
73 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
74 |
+
"""
|
75 |
+
pairs = set()
|
76 |
+
prev_char = word[0]
|
77 |
+
for char in word[1:]:
|
78 |
+
pairs.add((prev_char, char))
|
79 |
+
prev_char = char
|
80 |
+
return pairs
|
81 |
+
|
82 |
+
|
83 |
+
class Qwen2Tokenizer(PreTrainedTokenizer):
|
84 |
+
"""
|
85 |
+
Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
86 |
+
|
87 |
+
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
|
88 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
89 |
+
|
90 |
+
```python
|
91 |
+
>>> from transformers import Qwen2Tokenizer
|
92 |
+
|
93 |
+
>>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer")
|
94 |
+
>>> tokenizer("Hello world")["input_ids"]
|
95 |
+
[9707, 1879]
|
96 |
+
|
97 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
98 |
+
[21927, 1879]
|
99 |
+
```
|
100 |
+
This is expected.
|
101 |
+
|
102 |
+
You should not use GPT2Tokenizer instead, because of the different pretokenization rules.
|
103 |
+
|
104 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
105 |
+
this superclass for more information regarding those methods.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
vocab_file (`str`):
|
109 |
+
Path to the vocabulary file.
|
110 |
+
merges_file (`str`):
|
111 |
+
Path to the merges file.
|
112 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
113 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
114 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
115 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
116 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
117 |
+
token instead.
|
118 |
+
bos_token (`str`, *optional*):
|
119 |
+
The beginning of sequence token. Not applicable for this tokenizer.
|
120 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
121 |
+
The end of sequence token.
|
122 |
+
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
123 |
+
The token used for padding, for example when batching sequences of different lengths.
|
124 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
125 |
+
Whether or not the model should cleanup the spaces that were added when splitting the input text during the
|
126 |
+
tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces.
|
127 |
+
split_special_tokens (`bool`, *optional*, defaults to `False`):
|
128 |
+
Whether or not the special tokens should be split during the tokenization process. The default behavior is
|
129 |
+
to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") =
|
130 |
+
['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<',
|
131 |
+
'|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment.
|
132 |
+
"""
|
133 |
+
|
134 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
135 |
+
model_input_names = ["input_ids", "attention_mask"]
|
136 |
+
|
137 |
+
def __init__(
|
138 |
+
self,
|
139 |
+
vocab_file,
|
140 |
+
merges_file,
|
141 |
+
errors="replace",
|
142 |
+
unk_token="<|endoftext|>",
|
143 |
+
bos_token=None,
|
144 |
+
eos_token="<|endoftext|>",
|
145 |
+
pad_token="<|endoftext|>",
|
146 |
+
clean_up_tokenization_spaces=False,
|
147 |
+
split_special_tokens=False,
|
148 |
+
**kwargs,
|
149 |
+
):
|
150 |
+
# Qwen vocab does not contain control tokens; added tokens need to be special
|
151 |
+
bos_token = (
|
152 |
+
AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
153 |
+
if isinstance(bos_token, str)
|
154 |
+
else bos_token
|
155 |
+
)
|
156 |
+
eos_token = (
|
157 |
+
AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
158 |
+
if isinstance(eos_token, str)
|
159 |
+
else eos_token
|
160 |
+
)
|
161 |
+
unk_token = (
|
162 |
+
AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
163 |
+
if isinstance(unk_token, str)
|
164 |
+
else unk_token
|
165 |
+
)
|
166 |
+
pad_token = (
|
167 |
+
AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
168 |
+
if isinstance(pad_token, str)
|
169 |
+
else pad_token
|
170 |
+
)
|
171 |
+
|
172 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
173 |
+
self.encoder = json.load(vocab_handle)
|
174 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
175 |
+
self.errors = errors # how to handle errors in decoding
|
176 |
+
self.byte_encoder = bytes_to_unicode()
|
177 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
178 |
+
bpe_merges = []
|
179 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
180 |
+
for i, line in enumerate(merges_handle):
|
181 |
+
line = line.strip()
|
182 |
+
if (i == 0 and line.startswith("#version:")) or not line:
|
183 |
+
continue
|
184 |
+
bpe_merges.append(tuple(line.split()))
|
185 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
186 |
+
# NOTE: the cache can grow without bound and will get really large for long running processes
|
187 |
+
# (esp. for texts of language that do not use space between word, e.g. Chinese); technically
|
188 |
+
# not a memory leak but appears as one.
|
189 |
+
# GPT2Tokenizer has the same problem, so let's be consistent.
|
190 |
+
self.cache = {}
|
191 |
+
|
192 |
+
self.pat = re.compile(PRETOKENIZE_REGEX)
|
193 |
+
|
194 |
+
if kwargs.get("add_prefix_space", False):
|
195 |
+
logger.warning_once(
|
196 |
+
f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect."
|
197 |
+
)
|
198 |
+
|
199 |
+
super().__init__(
|
200 |
+
errors=errors,
|
201 |
+
bos_token=bos_token,
|
202 |
+
eos_token=eos_token,
|
203 |
+
pad_token=pad_token,
|
204 |
+
unk_token=unk_token,
|
205 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
206 |
+
split_special_tokens=split_special_tokens,
|
207 |
+
**kwargs,
|
208 |
+
)
|
209 |
+
|
210 |
+
@property
|
211 |
+
def vocab_size(self) -> int:
|
212 |
+
return len(self.encoder)
|
213 |
+
|
214 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab
|
215 |
+
def get_vocab(self):
|
216 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
217 |
+
|
218 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
|
219 |
+
def bpe(self, token):
|
220 |
+
if token in self.cache:
|
221 |
+
return self.cache[token]
|
222 |
+
word = tuple(token)
|
223 |
+
pairs = get_pairs(word)
|
224 |
+
|
225 |
+
if not pairs:
|
226 |
+
return token
|
227 |
+
|
228 |
+
while True:
|
229 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
230 |
+
if bigram not in self.bpe_ranks:
|
231 |
+
break
|
232 |
+
first, second = bigram
|
233 |
+
new_word = []
|
234 |
+
i = 0
|
235 |
+
while i < len(word):
|
236 |
+
try:
|
237 |
+
j = word.index(first, i)
|
238 |
+
except ValueError:
|
239 |
+
new_word.extend(word[i:])
|
240 |
+
break
|
241 |
+
else:
|
242 |
+
new_word.extend(word[i:j])
|
243 |
+
i = j
|
244 |
+
|
245 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
246 |
+
new_word.append(first + second)
|
247 |
+
i += 2
|
248 |
+
else:
|
249 |
+
new_word.append(word[i])
|
250 |
+
i += 1
|
251 |
+
new_word = tuple(new_word)
|
252 |
+
word = new_word
|
253 |
+
if len(word) == 1:
|
254 |
+
break
|
255 |
+
else:
|
256 |
+
pairs = get_pairs(word)
|
257 |
+
word = " ".join(word)
|
258 |
+
self.cache[token] = word
|
259 |
+
return word
|
260 |
+
|
261 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize
|
262 |
+
def _tokenize(self, text):
|
263 |
+
"""Tokenize a string."""
|
264 |
+
bpe_tokens = []
|
265 |
+
for token in re.findall(self.pat, text):
|
266 |
+
token = "".join(
|
267 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
268 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
269 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
270 |
+
return bpe_tokens
|
271 |
+
|
272 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
|
273 |
+
def _convert_token_to_id(self, token):
|
274 |
+
"""Converts a token (str) in an id using the vocab."""
|
275 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
276 |
+
|
277 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
|
278 |
+
def _convert_id_to_token(self, index):
|
279 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
280 |
+
return self.decoder.get(index)
|
281 |
+
|
282 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
|
283 |
+
def convert_tokens_to_string(self, tokens):
|
284 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
285 |
+
text = "".join(tokens)
|
286 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
287 |
+
return text
|
288 |
+
|
289 |
+
def decode(
|
290 |
+
self,
|
291 |
+
token_ids,
|
292 |
+
skip_special_tokens: bool = False,
|
293 |
+
clean_up_tokenization_spaces: Optional[bool] = False,
|
294 |
+
spaces_between_special_tokens: bool = False,
|
295 |
+
**kwargs,
|
296 |
+
) -> str:
|
297 |
+
# `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers
|
298 |
+
# and cannot be configured elsewhere, but it should default to False for Qwen2Tokenizer
|
299 |
+
return super().decode(
|
300 |
+
token_ids,
|
301 |
+
skip_special_tokens=skip_special_tokens,
|
302 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
303 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
304 |
+
**kwargs,
|
305 |
+
)
|
306 |
+
|
307 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
|
308 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
309 |
+
if not os.path.isdir(save_directory):
|
310 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
311 |
+
return
|
312 |
+
vocab_file = os.path.join(
|
313 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
314 |
+
)
|
315 |
+
merge_file = os.path.join(
|
316 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
317 |
+
)
|
318 |
+
|
319 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
320 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
321 |
+
|
322 |
+
index = 0
|
323 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
324 |
+
writer.write("#version: 0.2\n")
|
325 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
326 |
+
if index != token_index:
|
327 |
+
logger.warning(
|
328 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
329 |
+
" Please check that the tokenizer is not corrupted!"
|
330 |
+
)
|
331 |
+
index = token_index
|
332 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
333 |
+
index += 1
|
334 |
+
|
335 |
+
return vocab_file, merge_file
|
336 |
+
|
337 |
+
def prepare_for_tokenization(self, text, **kwargs):
|
338 |
+
text = unicodedata.normalize("NFC", text)
|
339 |
+
return (text, kwargs)
|
340 |
+
|
341 |
+
|
342 |
+
__all__ = ["Qwen2Tokenizer"]
|
tokenization_qwen2_fast.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for Qwen2."""
|
16 |
+
|
17 |
+
from typing import Optional, Tuple
|
18 |
+
|
19 |
+
from transformers.tokenization_utils import AddedToken
|
20 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
21 |
+
from transformers.utils import logging
|
22 |
+
from .tokenization_qwen2 import Qwen2Tokenizer
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
VOCAB_FILES_NAMES = {
|
28 |
+
"vocab_file": "vocab.json",
|
29 |
+
"merges_file": "merges.txt",
|
30 |
+
"tokenizer_file": "tokenizer.json",
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768}
|
35 |
+
|
36 |
+
|
37 |
+
class Qwen2TokenizerFast(PreTrainedTokenizerFast):
|
38 |
+
"""
|
39 |
+
Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
|
40 |
+
Byte-Pair-Encoding.
|
41 |
+
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
|
42 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
43 |
+
```python
|
44 |
+
>>> from transformers import Qwen2TokenizerFast
|
45 |
+
>>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer")
|
46 |
+
>>> tokenizer("Hello world")["input_ids"]
|
47 |
+
[9707, 1879]
|
48 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
49 |
+
[21927, 1879]
|
50 |
+
```
|
51 |
+
This is expected.
|
52 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
53 |
+
refer to this superclass for more information regarding those methods.
|
54 |
+
Args:
|
55 |
+
vocab_file (`str`, *optional*):
|
56 |
+
Path to the vocabulary file.
|
57 |
+
merges_file (`str`, *optional*):
|
58 |
+
Path to the merges file.
|
59 |
+
tokenizer_file (`str`, *optional*):
|
60 |
+
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
|
61 |
+
contains everything needed to load the tokenizer.
|
62 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
63 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
64 |
+
token instead. Not applicable to this tokenizer.
|
65 |
+
bos_token (`str`, *optional*):
|
66 |
+
The beginning of sequence token. Not applicable for this tokenizer.
|
67 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
68 |
+
The end of sequence token.
|
69 |
+
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
70 |
+
The token used for padding, for example when batching sequences of different lengths.
|
71 |
+
"""
|
72 |
+
|
73 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
74 |
+
model_input_names = ["input_ids", "attention_mask"]
|
75 |
+
slow_tokenizer_class = Qwen2Tokenizer
|
76 |
+
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
vocab_file=None,
|
80 |
+
merges_file=None,
|
81 |
+
tokenizer_file=None,
|
82 |
+
unk_token="<|endoftext|>",
|
83 |
+
bos_token=None,
|
84 |
+
eos_token="<|endoftext|>",
|
85 |
+
pad_token="<|endoftext|>",
|
86 |
+
**kwargs,
|
87 |
+
):
|
88 |
+
# We need to at least pass vocab_file and merges_file to base class
|
89 |
+
# in case a slow tokenizer needs to be initialized; other can be
|
90 |
+
# configured through files.
|
91 |
+
# following GPT2TokenizerFast, also adding unk_token, bos_token, and eos_token
|
92 |
+
|
93 |
+
bos_token = (
|
94 |
+
AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
95 |
+
if isinstance(bos_token, str)
|
96 |
+
else bos_token
|
97 |
+
)
|
98 |
+
eos_token = (
|
99 |
+
AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
100 |
+
if isinstance(eos_token, str)
|
101 |
+
else eos_token
|
102 |
+
)
|
103 |
+
unk_token = (
|
104 |
+
AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
105 |
+
if isinstance(unk_token, str)
|
106 |
+
else unk_token
|
107 |
+
)
|
108 |
+
pad_token = (
|
109 |
+
AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
110 |
+
if isinstance(pad_token, str)
|
111 |
+
else pad_token
|
112 |
+
)
|
113 |
+
|
114 |
+
super().__init__(
|
115 |
+
vocab_file=vocab_file,
|
116 |
+
merges_file=merges_file,
|
117 |
+
tokenizer_file=tokenizer_file,
|
118 |
+
unk_token=unk_token,
|
119 |
+
bos_token=bos_token,
|
120 |
+
eos_token=eos_token,
|
121 |
+
pad_token=pad_token,
|
122 |
+
**kwargs,
|
123 |
+
)
|
124 |
+
|
125 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary
|
126 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
127 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
128 |
+
return tuple(files)
|
129 |
+
|
130 |
+
|
131 |
+
__all__ = ["Qwen2TokenizerFast"]
|
tokenizer_config.json
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
},
|
213 |
+
"151669": {
|
214 |
+
"content": "<|MASK|>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": true
|
220 |
+
}
|
221 |
+
},
|
222 |
+
"additional_special_tokens": [
|
223 |
+
"<|im_start|>",
|
224 |
+
"<|im_end|>",
|
225 |
+
"<|object_ref_start|>",
|
226 |
+
"<|object_ref_end|>",
|
227 |
+
"<|box_start|>",
|
228 |
+
"<|box_end|>",
|
229 |
+
"<|quad_start|>",
|
230 |
+
"<|quad_end|>",
|
231 |
+
"<|vision_start|>",
|
232 |
+
"<|vision_end|>",
|
233 |
+
"<|vision_pad|>",
|
234 |
+
"<|image_pad|>",
|
235 |
+
"<|video_pad|>",
|
236 |
+
"<|MASK|>"
|
237 |
+
],
|
238 |
+
"auto_map": {
|
239 |
+
"AutoTokenizer": [
|
240 |
+
"tokenization_qwen2.Qwen2Tokenizer",
|
241 |
+
null
|
242 |
+
]
|
243 |
+
},
|
244 |
+
"bos_token": null,
|
245 |
+
"clean_up_tokenization_spaces": false,
|
246 |
+
"eos_token": "<|endoftext|>",
|
247 |
+
"errors": "replace",
|
248 |
+
"extra_special_tokens": {},
|
249 |
+
"mask_token": "<|MASK|>",
|
250 |
+
"model_max_length": 131072,
|
251 |
+
"pad_token": "<|endoftext|>",
|
252 |
+
"split_special_tokens": false,
|
253 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
254 |
+
"unk_token": null
|
255 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|