Genereux-akotenou's picture
add train reports
0318fb1 verified
raw
history blame contribute delete
156 kB
<html>
<head>
<title>GENE_FAMILY: ARF</title>
<style>
body { font-family: Arial, sans-serif; }
.container { border: 2px solid #ddd; margin: 20px; padding: 20px; }
.header { padding: 0.6em; background-color: #ffdddd; font-weight: bold; }
.title { padding: 0.6em; background-color: #80c4e6bd; font-weight: bold; }
.section { padding: 10px; }
.metrics { display: flex; }
.metrics ul { list-style: none; padding: 0; }
.metrics ul + ul { margin-left: 2em; }
.confusion-matrix img, .learning-curve img { width: 100%; max-width: 565px; }
.class_dist { width: 20em; }
.mod_sum { margin-bottom: 2em; }
</style>
</head>
<body>
<div class="container title">
<h3>GENE_FAMILY: <a href='https://planttfdb.gao-lab.org/family.php?fam=ARF' target='_blank'>ARF</a></h3>
</div>
<div class="container">
<div class="header">MODEL: FEEDFORWARD_k2</div>
<div style="display: flex;">
<div class="section">
<h2 class='mod_sum'>Model Architecture</h2>
<pre>Model: "FEEDFORWARD_k2"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ dense (Dense) │ (None, 256) │ 113,152 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout (Dropout) │ (None, 256) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_1 (Dense) │ (None, 128) │ 32,896 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_1 (Dropout) │ (None, 128) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_2 (Dense) │ (None, 64) │ 8,256 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_2 (Dropout) │ (None, 64) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_3 (Dense) │ (None, 32) │ 2,080 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_3 (Dropout) │ (None, 32) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_4 (Dense) │ (None, 1) │ 33 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
Total params: 469,253 (1.79 MB)
Trainable params: 156,417 (611.00 KB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 312,836 (1.19 MB)
</pre>
</div>
<div class="section learning-curve">
<h2>Learning Curve</h2>
<img src="" alt="Learning Curve">
</div>
</div>
<div style="display: flex;">
<div class="section class_dist">
<h2>Class Distribution</h2>
<pre> Count Percentage
class
1 4578 50.16
0 4549 49.84</pre>
<h3>Additional Metrics</h3>
<ul>
<li>Total Samples: 9127</li>
<li>Imbalance Ratio: 1.01</li>
</ul>
</div>
<div class="section">
<h2>Classification Report</h2>
<pre> precision recall f1-score support
Class 0 0.9967 0.9934 0.9950 910
Class 1 0.9935 0.9967 0.9951 916
accuracy 0.9951 1826
macro avg 0.9951 0.9951 0.9951 1826
weighted avg 0.9951 0.9951 0.9951 1826
</pre>
<h3>Metrics</h3>
<div class="metrics">
<ul>
<li>True Positives (TP): 913</li>
<li>True Negatives (TN): 904</li>
</ul>
<ul>
<li>False Positives (FP): 6</li>
<li>False Negatives (FN): 3</li>
</ul>
</div>
</div>
<div class="section confusion-matrix">
<h2>Confusion Matrix</h2>
<img src="" alt="Confusion Matrix">
</div>
</div>
</div>
<div class="container">
<div class="header">MODEL: FEEDFORWARD_k3</div>
<div style="display: flex;">
<div class="section">
<h2 class='mod_sum'>Model Architecture</h2>
<pre>Model: "FEEDFORWARD_k3"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ dense_5 (Dense) │ (None, 256) │ 2,269,440 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_4 (Dropout) │ (None, 256) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_6 (Dense) │ (None, 128) │ 32,896 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_5 (Dropout) │ (None, 128) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_7 (Dense) │ (None, 64) │ 8,256 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_6 (Dropout) │ (None, 64) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_8 (Dense) │ (None, 32) │ 2,080 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_7 (Dropout) │ (None, 32) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_9 (Dense) │ (None, 1) │ 33 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
Total params: 6,938,117 (26.47 MB)
Trainable params: 2,312,705 (8.82 MB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 4,625,412 (17.64 MB)
</pre>
</div>
<div class="section learning-curve">
<h2>Learning Curve</h2>
<img src="" alt="Learning Curve">
</div>
</div>
<div style="display: flex;">
<div class="section class_dist">
<h2>Class Distribution</h2>
<pre> Count Percentage
class
1 4578 50.16
0 4549 49.84</pre>
<h3>Additional Metrics</h3>
<ul>
<li>Total Samples: 9127</li>
<li>Imbalance Ratio: 1.01</li>
</ul>
</div>
<div class="section">
<h2>Classification Report</h2>
<pre> precision recall f1-score support
Class 0 0.9989 1.0000 0.9995 910
Class 1 1.0000 0.9989 0.9995 916
accuracy 0.9995 1826
macro avg 0.9995 0.9995 0.9995 1826
weighted avg 0.9995 0.9995 0.9995 1826
</pre>
<h3>Metrics</h3>
<div class="metrics">
<ul>
<li>True Positives (TP): 915</li>
<li>True Negatives (TN): 910</li>
</ul>
<ul>
<li>False Positives (FP): 0</li>
<li>False Negatives (FN): 1</li>
</ul>
</div>
</div>
<div class="section confusion-matrix">
<h2>Confusion Matrix</h2>
<img src="" alt="Confusion Matrix">
</div>
</div>
</div>
<div class="container">
<div class="header">MODEL: FEEDFORWARD_k4</div>
<div style="display: flex;">
<div class="section">
<h2 class='mod_sum'>Model Architecture</h2>
<pre>Model: "FEEDFORWARD_k4"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ dense_10 (Dense) │ (None, 256) │ 39,033,088 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_8 (Dropout) │ (None, 256) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_11 (Dense) │ (None, 128) │ 32,896 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_9 (Dropout) │ (None, 128) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_12 (Dense) │ (None, 64) │ 8,256 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_10 (Dropout) │ (None, 64) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_13 (Dense) │ (None, 1) │ 65 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
Total params: 117,222,917 (447.17 MB)
Trainable params: 39,074,305 (149.06 MB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 78,148,612 (298.11 MB)
</pre>
</div>
<div class="section learning-curve">
<h2>Learning Curve</h2>
<img src="" alt="Learning Curve">
</div>
</div>
<div style="display: flex;">
<div class="section class_dist">
<h2>Class Distribution</h2>
<pre> Count Percentage
class
1 4578 50.16
0 4549 49.84</pre>
<h3>Additional Metrics</h3>
<ul>
<li>Total Samples: 9127</li>
<li>Imbalance Ratio: 1.01</li>
</ul>
</div>
<div class="section">
<h2>Classification Report</h2>
<pre> precision recall f1-score support
Class 0 0.9967 1.0000 0.9984 910
Class 1 1.0000 0.9967 0.9984 916
accuracy 0.9984 1826
macro avg 0.9984 0.9984 0.9984 1826
weighted avg 0.9984 0.9984 0.9984 1826
</pre>
<h3>Metrics</h3>
<div class="metrics">
<ul>
<li>True Positives (TP): 913</li>
<li>True Negatives (TN): 910</li>
</ul>
<ul>
<li>False Positives (FP): 0</li>
<li>False Negatives (FN): 3</li>
</ul>
</div>
</div>
<div class="section confusion-matrix">
<h2>Confusion Matrix</h2>
<img src="" alt="Confusion Matrix">
</div>
</div>
</div>
</body>
</html>