Genereux-akotenou's picture
add train reports
0318fb1 verified
raw
history blame contribute delete
159 kB
<html>
<head>
<title>GENE_FAMILY: Dof</title>
<style>
body { font-family: Arial, sans-serif; }
.container { border: 2px solid #ddd; margin: 20px; padding: 20px; }
.header { padding: 0.6em; background-color: #ffdddd; font-weight: bold; }
.title { padding: 0.6em; background-color: #80c4e6bd; font-weight: bold; }
.section { padding: 10px; }
.metrics { display: flex; }
.metrics ul { list-style: none; padding: 0; }
.metrics ul + ul { margin-left: 2em; }
.confusion-matrix img, .learning-curve img { width: 100%; max-width: 565px; }
.class_dist { width: 20em; }
.mod_sum { margin-bottom: 2em; }
</style>
</head>
<body>
<div class="container title">
<h3>GENE_FAMILY: <a href='https://planttfdb.gao-lab.org/family.php?fam=Dof' target='_blank'>Dof</a></h3>
</div>
<div class="container">
<div class="header">MODEL: FEEDFORWARD_k2</div>
<div style="display: flex;">
<div class="section">
<h2 class='mod_sum'>Model Architecture</h2>
<pre>Model: "FEEDFORWARD_k2"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ dense (Dense) │ (None, 256) │ 113,152 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout (Dropout) │ (None, 256) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_1 (Dense) │ (None, 128) │ 32,896 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_1 (Dropout) │ (None, 128) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_2 (Dense) │ (None, 64) │ 8,256 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_2 (Dropout) │ (None, 64) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_3 (Dense) │ (None, 32) │ 2,080 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_3 (Dropout) │ (None, 32) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_4 (Dense) │ (None, 1) │ 33 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
Total params: 469,253 (1.79 MB)
Trainable params: 156,417 (611.00 KB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 312,836 (1.19 MB)
</pre>
</div>
<div class="section learning-curve">
<h2>Learning Curve</h2>
<img src="" alt="Learning Curve">
</div>
</div>
<div style="display: flex;">
<div class="section class_dist">
<h2>Class Distribution</h2>
<pre> Count Percentage
class
1 5655 50.13
0 5626 49.87</pre>
<h3>Additional Metrics</h3>
<ul>
<li>Total Samples: 11281</li>
<li>Imbalance Ratio: 1.01</li>
</ul>
</div>
<div class="section">
<h2>Classification Report</h2>
<pre> precision recall f1-score support
Class 0 0.9860 0.9973 0.9916 1126
Class 1 0.9973 0.9859 0.9916 1131
accuracy 0.9916 2257
macro avg 0.9916 0.9916 0.9916 2257
weighted avg 0.9916 0.9916 0.9916 2257
</pre>
<h3>Metrics</h3>
<div class="metrics">
<ul>
<li>True Positives (TP): 1115</li>
<li>True Negatives (TN): 1123</li>
</ul>
<ul>
<li>False Positives (FP): 3</li>
<li>False Negatives (FN): 16</li>
</ul>
</div>
</div>
<div class="section confusion-matrix">
<h2>Confusion Matrix</h2>
<img src="" alt="Confusion Matrix">
</div>
</div>
</div>
<div class="container">
<div class="header">MODEL: FEEDFORWARD_k3</div>
<div style="display: flex;">
<div class="section">
<h2 class='mod_sum'>Model Architecture</h2>
<pre>Model: "FEEDFORWARD_k3"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ dense_5 (Dense) │ (None, 256) │ 2,282,496 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_4 (Dropout) │ (None, 256) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_6 (Dense) │ (None, 128) │ 32,896 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_5 (Dropout) │ (None, 128) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_7 (Dense) │ (None, 64) │ 8,256 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_6 (Dropout) │ (None, 64) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_8 (Dense) │ (None, 32) │ 2,080 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_7 (Dropout) │ (None, 32) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_9 (Dense) │ (None, 1) │ 33 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
Total params: 6,977,285 (26.62 MB)
Trainable params: 2,325,761 (8.87 MB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 4,651,524 (17.74 MB)
</pre>
</div>
<div class="section learning-curve">
<h2>Learning Curve</h2>
<img src="" alt="Learning Curve">
</div>
</div>
<div style="display: flex;">
<div class="section class_dist">
<h2>Class Distribution</h2>
<pre> Count Percentage
class
1 5655 50.13
0 5626 49.87</pre>
<h3>Additional Metrics</h3>
<ul>
<li>Total Samples: 11281</li>
<li>Imbalance Ratio: 1.01</li>
</ul>
</div>
<div class="section">
<h2>Classification Report</h2>
<pre> precision recall f1-score support
Class 0 0.9965 1.0000 0.9982 1126
Class 1 1.0000 0.9965 0.9982 1131
accuracy 0.9982 2257
macro avg 0.9982 0.9982 0.9982 2257
weighted avg 0.9982 0.9982 0.9982 2257
</pre>
<h3>Metrics</h3>
<div class="metrics">
<ul>
<li>True Positives (TP): 1127</li>
<li>True Negatives (TN): 1126</li>
</ul>
<ul>
<li>False Positives (FP): 0</li>
<li>False Negatives (FN): 4</li>
</ul>
</div>
</div>
<div class="section confusion-matrix">
<h2>Confusion Matrix</h2>
<img src="" alt="Confusion Matrix">
</div>
</div>
</div>
<div class="container">
<div class="header">MODEL: FEEDFORWARD_k4</div>
<div style="display: flex;">
<div class="section">
<h2 class='mod_sum'>Model Architecture</h2>
<pre>Model: "FEEDFORWARD_k4"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ dense_10 (Dense) │ (None, 256) │ 39,403,264 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_8 (Dropout) │ (None, 256) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_11 (Dense) │ (None, 128) │ 32,896 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_9 (Dropout) │ (None, 128) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_12 (Dense) │ (None, 64) │ 8,256 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_10 (Dropout) │ (None, 64) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_13 (Dense) │ (None, 1) │ 65 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
Total params: 118,333,445 (451.41 MB)
Trainable params: 39,444,481 (150.47 MB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 78,888,964 (300.94 MB)
</pre>
</div>
<div class="section learning-curve">
<h2>Learning Curve</h2>
<img src="" alt="Learning Curve">
</div>
</div>
<div style="display: flex;">
<div class="section class_dist">
<h2>Class Distribution</h2>
<pre> Count Percentage
class
1 5655 50.13
0 5626 49.87</pre>
<h3>Additional Metrics</h3>
<ul>
<li>Total Samples: 11281</li>
<li>Imbalance Ratio: 1.01</li>
</ul>
</div>
<div class="section">
<h2>Classification Report</h2>
<pre> precision recall f1-score support
Class 0 0.9921 1.0000 0.9960 1126
Class 1 1.0000 0.9920 0.9960 1131
accuracy 0.9960 2257
macro avg 0.9960 0.9960 0.9960 2257
weighted avg 0.9960 0.9960 0.9960 2257
</pre>
<h3>Metrics</h3>
<div class="metrics">
<ul>
<li>True Positives (TP): 1122</li>
<li>True Negatives (TN): 1126</li>
</ul>
<ul>
<li>False Positives (FP): 0</li>
<li>False Negatives (FN): 9</li>
</ul>
</div>
</div>
<div class="section confusion-matrix">
<h2>Confusion Matrix</h2>
<img src="" alt="Confusion Matrix">
</div>
</div>
</div>
</body>
</html>