|
|
|
<html> |
|
<head> |
|
<title>GENE_FAMILY: Dof</title> |
|
<style> |
|
body { font-family: Arial, sans-serif; } |
|
.container { border: 2px solid #ddd; margin: 20px; padding: 20px; } |
|
.header { padding: 0.6em; background-color: #ffdddd; font-weight: bold; } |
|
.title { padding: 0.6em; background-color: #80c4e6bd; font-weight: bold; } |
|
.section { padding: 10px; } |
|
.metrics { display: flex; } |
|
.metrics ul { list-style: none; padding: 0; } |
|
.metrics ul + ul { margin-left: 2em; } |
|
.confusion-matrix img, .learning-curve img { width: 100%; max-width: 565px; } |
|
.class_dist { width: 20em; } |
|
.mod_sum { margin-bottom: 2em; } |
|
</style> |
|
</head> |
|
<body> |
|
<div class="container title"> |
|
<h3>GENE_FAMILY: <a href='https://planttfdb.gao-lab.org/family.php?fam=Dof' target='_blank'>Dof</a></h3> |
|
</div> |
|
|
|
<div class="container"> |
|
<div class="header">MODEL: FEEDFORWARD_k2</div> |
|
<div style="display: flex;"> |
|
<div class="section"> |
|
<h2 class='mod_sum'>Model Architecture</h2> |
|
<pre>Model: "FEEDFORWARD_k2" |
|
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ |
|
┃ Layer (type) ┃ Output Shape ┃ Param # ┃ |
|
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ |
|
│ dense (Dense) │ (None, 256) │ 51,456 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dropout (Dropout) │ (None, 256) │ 0 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dense_1 (Dense) │ (None, 128) │ 32,896 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dropout_1 (Dropout) │ (None, 128) │ 0 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dense_2 (Dense) │ (None, 64) │ 8,256 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dropout_2 (Dropout) │ (None, 64) │ 0 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dense_3 (Dense) │ (None, 32) │ 2,080 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dropout_3 (Dropout) │ (None, 32) │ 0 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dense_4 (Dense) │ (None, 1) │ 33 │ |
|
└─────────────────────────────────┴────────────────────────┴───────────────┘ |
|
Total params: 284,165 (1.08 MB) |
|
Trainable params: 94,721 (370.00 KB) |
|
Non-trainable params: 0 (0.00 B) |
|
Optimizer params: 189,444 (740.02 KB) |
|
</pre> |
|
</div> |
|
<div class="section learning-curve"> |
|
<h2>Learning Curve</h2> |
|
<img src="" alt="Learning Curve"> |
|
</div> |
|
</div> |
|
<div style="display: flex;"> |
|
<div class="section class_dist"> |
|
<h2>Class Distribution</h2> |
|
<pre> Count Percentage |
|
class |
|
1 4524 50.13 |
|
0 4500 49.87</pre> |
|
<h3>Additional Metrics</h3> |
|
<ul> |
|
<li>Total Samples: 9024</li> |
|
<li>Imbalance Ratio: 1.01</li> |
|
</ul> |
|
</div> |
|
<div class="section"> |
|
<h2>Classification Report</h2> |
|
<pre> precision recall f1-score support |
|
|
|
Class 0 0.9903 0.9947 0.9925 1126 |
|
Class 1 0.9947 0.9903 0.9925 1131 |
|
|
|
accuracy 0.9925 2257 |
|
macro avg 0.9925 0.9925 0.9925 2257 |
|
weighted avg 0.9925 0.9925 0.9925 2257 |
|
</pre> |
|
<h3>Metrics</h3> |
|
<div class="metrics"> |
|
<ul> |
|
<li>True Positives (TP): 1120</li> |
|
<li>True Negatives (TN): 1120</li> |
|
</ul> |
|
<ul> |
|
<li>False Positives (FP): 6</li> |
|
<li>False Negatives (FN): 11</li> |
|
</ul> |
|
</div> |
|
</div> |
|
<div class="section confusion-matrix"> |
|
<h2>Confusion Matrix</h2> |
|
<img src="" alt="Confusion Matrix"> |
|
</div> |
|
</div> |
|
</div> |
|
|
|
<div class="container"> |
|
<div class="header">MODEL: FEEDFORWARD_k3</div> |
|
<div style="display: flex;"> |
|
<div class="section"> |
|
<h2 class='mod_sum'>Model Architecture</h2> |
|
<pre>Model: "FEEDFORWARD_k3" |
|
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ |
|
┃ Layer (type) ┃ Output Shape ┃ Param # ┃ |
|
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ |
|
│ dense_5 (Dense) │ (None, 256) │ 256,256 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dropout_4 (Dropout) │ (None, 256) │ 0 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dense_6 (Dense) │ (None, 128) │ 32,896 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dropout_5 (Dropout) │ (None, 128) │ 0 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dense_7 (Dense) │ (None, 64) │ 8,256 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dropout_6 (Dropout) │ (None, 64) │ 0 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dense_8 (Dense) │ (None, 32) │ 2,080 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dropout_7 (Dropout) │ (None, 32) │ 0 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dense_9 (Dense) │ (None, 1) │ 33 │ |
|
└─────────────────────────────────┴────────────────────────┴───────────────┘ |
|
Total params: 898,565 (3.43 MB) |
|
Trainable params: 299,521 (1.14 MB) |
|
Non-trainable params: 0 (0.00 B) |
|
Optimizer params: 599,044 (2.29 MB) |
|
</pre> |
|
</div> |
|
<div class="section learning-curve"> |
|
<h2>Learning Curve</h2> |
|
<img src="" alt="Learning Curve"> |
|
</div> |
|
</div> |
|
<div style="display: flex;"> |
|
<div class="section class_dist"> |
|
<h2>Class Distribution</h2> |
|
<pre> Count Percentage |
|
class |
|
1 4524 50.13 |
|
0 4500 49.87</pre> |
|
<h3>Additional Metrics</h3> |
|
<ul> |
|
<li>Total Samples: 9024</li> |
|
<li>Imbalance Ratio: 1.01</li> |
|
</ul> |
|
</div> |
|
<div class="section"> |
|
<h2>Classification Report</h2> |
|
<pre> precision recall f1-score support |
|
|
|
Class 0 0.9947 1.0000 0.9973 1126 |
|
Class 1 1.0000 0.9947 0.9973 1131 |
|
|
|
accuracy 0.9973 2257 |
|
macro avg 0.9973 0.9973 0.9973 2257 |
|
weighted avg 0.9974 0.9973 0.9973 2257 |
|
</pre> |
|
<h3>Metrics</h3> |
|
<div class="metrics"> |
|
<ul> |
|
<li>True Positives (TP): 1125</li> |
|
<li>True Negatives (TN): 1126</li> |
|
</ul> |
|
<ul> |
|
<li>False Positives (FP): 0</li> |
|
<li>False Negatives (FN): 6</li> |
|
</ul> |
|
</div> |
|
</div> |
|
<div class="section confusion-matrix"> |
|
<h2>Confusion Matrix</h2> |
|
<img src="" alt="Confusion Matrix"> |
|
</div> |
|
</div> |
|
</div> |
|
|
|
<div class="container"> |
|
<div class="header">MODEL: FEEDFORWARD_k4</div> |
|
<div style="display: flex;"> |
|
<div class="section"> |
|
<h2 class='mod_sum'>Model Architecture</h2> |
|
<pre>Model: "FEEDFORWARD_k4" |
|
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ |
|
┃ Layer (type) ┃ Output Shape ┃ Param # ┃ |
|
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ |
|
│ dense_10 (Dense) │ (None, 256) │ 256,256 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dropout_8 (Dropout) │ (None, 256) │ 0 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dense_11 (Dense) │ (None, 128) │ 32,896 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dropout_9 (Dropout) │ (None, 128) │ 0 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dense_12 (Dense) │ (None, 64) │ 8,256 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dropout_10 (Dropout) │ (None, 64) │ 0 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dense_13 (Dense) │ (None, 1) │ 65 │ |
|
└─────────────────────────────────┴────────────────────────┴───────────────┘ |
|
Total params: 892,421 (3.40 MB) |
|
Trainable params: 297,473 (1.13 MB) |
|
Non-trainable params: 0 (0.00 B) |
|
Optimizer params: 594,948 (2.27 MB) |
|
</pre> |
|
</div> |
|
<div class="section learning-curve"> |
|
<h2>Learning Curve</h2> |
|
<img src="" alt="Learning Curve"> |
|
</div> |
|
</div> |
|
<div style="display: flex;"> |
|
<div class="section class_dist"> |
|
<h2>Class Distribution</h2> |
|
<pre> Count Percentage |
|
class |
|
1 4524 50.13 |
|
0 4500 49.87</pre> |
|
<h3>Additional Metrics</h3> |
|
<ul> |
|
<li>Total Samples: 9024</li> |
|
<li>Imbalance Ratio: 1.01</li> |
|
</ul> |
|
</div> |
|
<div class="section"> |
|
<h2>Classification Report</h2> |
|
<pre> precision recall f1-score support |
|
|
|
Class 0 0.9877 1.0000 0.9938 1126 |
|
Class 1 1.0000 0.9876 0.9938 1131 |
|
|
|
accuracy 0.9938 2257 |
|
macro avg 0.9939 0.9938 0.9938 2257 |
|
weighted avg 0.9939 0.9938 0.9938 2257 |
|
</pre> |
|
<h3>Metrics</h3> |
|
<div class="metrics"> |
|
<ul> |
|
<li>True Positives (TP): 1117</li> |
|
<li>True Negatives (TN): 1126</li> |
|
</ul> |
|
<ul> |
|
<li>False Positives (FP): 0</li> |
|
<li>False Negatives (FN): 14</li> |
|
</ul> |
|
</div> |
|
</div> |
|
<div class="section confusion-matrix"> |
|
<h2>Confusion Matrix</h2> |
|
<img src="" alt="Confusion Matrix"> |
|
</div> |
|
</div> |
|
</div> |
|
|
|
<div class="container"> |
|
<div class="header">MODEL: FEEDFORWARD_k5</div> |
|
<div style="display: flex;"> |
|
<div class="section"> |
|
<h2 class='mod_sum'>Model Architecture</h2> |
|
<pre>Model: "FEEDFORWARD_k5" |
|
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ |
|
┃ Layer (type) ┃ Output Shape ┃ Param # ┃ |
|
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ |
|
│ dense_14 (Dense) │ (None, 512) │ 512,512 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dropout_11 (Dropout) │ (None, 512) │ 0 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dense_15 (Dense) │ (None, 128) │ 65,664 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dropout_12 (Dropout) │ (None, 128) │ 0 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dense_16 (Dense) │ (None, 64) │ 8,256 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dropout_13 (Dropout) │ (None, 64) │ 0 │ |
|
├─────────────────────────────────┼────────────────────────┼───────────────┤ |
|
│ dense_17 (Dense) │ (None, 1) │ 65 │ |
|
└─────────────────────────────────┴────────────────────────┴───────────────┘ |
|
Total params: 1,759,493 (6.71 MB) |
|
Trainable params: 586,497 (2.24 MB) |
|
Non-trainable params: 0 (0.00 B) |
|
Optimizer params: 1,172,996 (4.47 MB) |
|
</pre> |
|
</div> |
|
<div class="section learning-curve"> |
|
<h2>Learning Curve</h2> |
|
<img src="" alt="Learning Curve"> |
|
</div> |
|
</div> |
|
<div style="display: flex;"> |
|
<div class="section class_dist"> |
|
<h2>Class Distribution</h2> |
|
<pre> Count Percentage |
|
class |
|
1 4524 50.13 |
|
0 4500 49.87</pre> |
|
<h3>Additional Metrics</h3> |
|
<ul> |
|
<li>Total Samples: 9024</li> |
|
<li>Imbalance Ratio: 1.01</li> |
|
</ul> |
|
</div> |
|
<div class="section"> |
|
<h2>Classification Report</h2> |
|
<pre> precision recall f1-score support |
|
|
|
Class 0 0.9903 1.0000 0.9951 1126 |
|
Class 1 1.0000 0.9903 0.9951 1131 |
|
|
|
accuracy 0.9951 2257 |
|
macro avg 0.9952 0.9951 0.9951 2257 |
|
weighted avg 0.9952 0.9951 0.9951 2257 |
|
</pre> |
|
<h3>Metrics</h3> |
|
<div class="metrics"> |
|
<ul> |
|
<li>True Positives (TP): 1120</li> |
|
<li>True Negatives (TN): 1126</li> |
|
</ul> |
|
<ul> |
|
<li>False Positives (FP): 0</li> |
|
<li>False Negatives (FN): 11</li> |
|
</ul> |
|
</div> |
|
</div> |
|
<div class="section confusion-matrix"> |
|
<h2>Confusion Matrix</h2> |
|
<img src="" alt="Confusion Matrix"> |
|
</div> |
|
</div> |
|
</div> |
|
|
|
</body> |
|
</html> |
|
|