|
|
|
<html> |
|
<head> |
|
<title>GENE_FAMILY: HSF</title> |
|
<style> |
|
body { font-family: Arial, sans-serif; } |
|
.container { border: 2px solid #ddd; margin: 20px; padding: 20px; } |
|
.header { padding: 0.6em; background-color: #ffdddd; font-weight: bold; } |
|
.title { padding: 0.6em; background-color: #80c4e6bd; font-weight: bold; } |
|
.section { padding: 10px; } |
|
.metrics { display: flex; } |
|
.metrics ul { list-style: none; padding: 0; } |
|
.metrics ul + ul { margin-left: 2em; } |
|
.confusion-matrix img, .learning-curve img { width: 100%; max-width: 565px; } |
|
.class_dist { width: 20em; } |
|
.mod_sum { margin-bottom: 2em; } |
|
</style> |
|
</head> |
|
<body> |
|
<div class="container title"> |
|
<h3>GENE_FAMILY: <a href='https://planttfdb.gao-lab.org/family.php?fam=HSF' target='_blank'>HSF</a></h3> |
|
</div> |
|
|
|
<div class="container"> |
|
<div class="header">MODEL: FEEDFORWARD_k2</div> |
|
<div style="display: flex;"> |
|
<div class="section"> |
|
<h2 class='mod_sum'>Model Architecture</h2> |
|
<pre>Model: "FEEDFORWARD_k2" |
|
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓ |
|
┃ Layer (type) ┃ Output Shape ┃ Param # ┃ |
|
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩ |
|
│ dense (Dense) │ (None, 256) │ 113,152 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dropout (Dropout) │ (None, 256) │ 0 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dense_1 (Dense) │ (None, 128) │ 32,896 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dropout_1 (Dropout) │ (None, 128) │ 0 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dense_2 (Dense) │ (None, 64) │ 8,256 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dropout_2 (Dropout) │ (None, 64) │ 0 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dense_3 (Dense) │ (None, 32) │ 2,080 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dropout_3 (Dropout) │ (None, 32) │ 0 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dense_4 (Dense) │ (None, 1) │ 33 │ |
|
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘ |
|
Total params: 469,253 (1.79 MB) |
|
Trainable params: 156,417 (611.00 KB) |
|
Non-trainable params: 0 (0.00 B) |
|
Optimizer params: 312,836 (1.19 MB) |
|
</pre> |
|
</div> |
|
<div class="section learning-curve"> |
|
<h2>Learning Curve</h2> |
|
<img src="" alt="Learning Curve"> |
|
</div> |
|
</div> |
|
<div style="display: flex;"> |
|
<div class="section class_dist"> |
|
<h2>Class Distribution</h2> |
|
<pre> Count Percentage |
|
class |
|
1 4574 50.16 |
|
0 4545 49.84</pre> |
|
<h3>Additional Metrics</h3> |
|
<ul> |
|
<li>Total Samples: 9119</li> |
|
<li>Imbalance Ratio: 1.01</li> |
|
</ul> |
|
</div> |
|
<div class="section"> |
|
<h2>Classification Report</h2> |
|
<pre> precision recall f1-score support |
|
|
|
Class 0 0.9965 0.9472 0.9712 909 |
|
Class 1 0.9500 0.9967 0.9728 915 |
|
|
|
accuracy 0.9720 1824 |
|
macro avg 0.9733 0.9720 0.9720 1824 |
|
weighted avg 0.9732 0.9720 0.9720 1824 |
|
</pre> |
|
<h3>Metrics</h3> |
|
<div class="metrics"> |
|
<ul> |
|
<li>True Positives (TP): 912</li> |
|
<li>True Negatives (TN): 861</li> |
|
</ul> |
|
<ul> |
|
<li>False Positives (FP): 48</li> |
|
<li>False Negatives (FN): 3</li> |
|
</ul> |
|
</div> |
|
</div> |
|
<div class="section confusion-matrix"> |
|
<h2>Confusion Matrix</h2> |
|
<img src="" alt="Confusion Matrix"> |
|
</div> |
|
</div> |
|
</div> |
|
|
|
<div class="container"> |
|
<div class="header">MODEL: FEEDFORWARD_k3</div> |
|
<div style="display: flex;"> |
|
<div class="section"> |
|
<h2 class='mod_sum'>Model Architecture</h2> |
|
<pre>Model: "FEEDFORWARD_k3" |
|
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓ |
|
┃ Layer (type) ┃ Output Shape ┃ Param # ┃ |
|
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩ |
|
│ dense_5 (Dense) │ (None, 256) │ 2,279,936 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dropout_4 (Dropout) │ (None, 256) │ 0 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dense_6 (Dense) │ (None, 128) │ 32,896 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dropout_5 (Dropout) │ (None, 128) │ 0 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dense_7 (Dense) │ (None, 64) │ 8,256 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dropout_6 (Dropout) │ (None, 64) │ 0 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dense_8 (Dense) │ (None, 32) │ 2,080 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dropout_7 (Dropout) │ (None, 32) │ 0 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dense_9 (Dense) │ (None, 1) │ 33 │ |
|
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘ |
|
Total params: 6,969,605 (26.59 MB) |
|
Trainable params: 2,323,201 (8.86 MB) |
|
Non-trainable params: 0 (0.00 B) |
|
Optimizer params: 4,646,404 (17.72 MB) |
|
</pre> |
|
</div> |
|
<div class="section learning-curve"> |
|
<h2>Learning Curve</h2> |
|
<img src="" alt="Learning Curve"> |
|
</div> |
|
</div> |
|
<div style="display: flex;"> |
|
<div class="section class_dist"> |
|
<h2>Class Distribution</h2> |
|
<pre> Count Percentage |
|
class |
|
1 4574 50.16 |
|
0 4545 49.84</pre> |
|
<h3>Additional Metrics</h3> |
|
<ul> |
|
<li>Total Samples: 9119</li> |
|
<li>Imbalance Ratio: 1.01</li> |
|
</ul> |
|
</div> |
|
<div class="section"> |
|
<h2>Classification Report</h2> |
|
<pre> precision recall f1-score support |
|
|
|
Class 0 0.9934 0.9989 0.9962 909 |
|
Class 1 0.9989 0.9934 0.9962 915 |
|
|
|
accuracy 0.9962 1824 |
|
macro avg 0.9962 0.9962 0.9962 1824 |
|
weighted avg 0.9962 0.9962 0.9962 1824 |
|
</pre> |
|
<h3>Metrics</h3> |
|
<div class="metrics"> |
|
<ul> |
|
<li>True Positives (TP): 909</li> |
|
<li>True Negatives (TN): 908</li> |
|
</ul> |
|
<ul> |
|
<li>False Positives (FP): 1</li> |
|
<li>False Negatives (FN): 6</li> |
|
</ul> |
|
</div> |
|
</div> |
|
<div class="section confusion-matrix"> |
|
<h2>Confusion Matrix</h2> |
|
<img src="" alt="Confusion Matrix"> |
|
</div> |
|
</div> |
|
</div> |
|
|
|
<div class="container"> |
|
<div class="header">MODEL: FEEDFORWARD_k4</div> |
|
<div style="display: flex;"> |
|
<div class="section"> |
|
<h2 class='mod_sum'>Model Architecture</h2> |
|
<pre>Model: "FEEDFORWARD_k4" |
|
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓ |
|
┃ Layer (type) ┃ Output Shape ┃ Param # ┃ |
|
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩ |
|
│ dense_10 (Dense) │ (None, 256) │ 38,727,424 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dropout_8 (Dropout) │ (None, 256) │ 0 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dense_11 (Dense) │ (None, 128) │ 32,896 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dropout_9 (Dropout) │ (None, 128) │ 0 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dense_12 (Dense) │ (None, 64) │ 8,256 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dropout_10 (Dropout) │ (None, 64) │ 0 │ |
|
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ |
|
│ dense_13 (Dense) │ (None, 1) │ 65 │ |
|
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘ |
|
Total params: 116,305,925 (443.67 MB) |
|
Trainable params: 38,768,641 (147.89 MB) |
|
Non-trainable params: 0 (0.00 B) |
|
Optimizer params: 77,537,284 (295.78 MB) |
|
</pre> |
|
</div> |
|
<div class="section learning-curve"> |
|
<h2>Learning Curve</h2> |
|
<img src="" alt="Learning Curve"> |
|
</div> |
|
</div> |
|
<div style="display: flex;"> |
|
<div class="section class_dist"> |
|
<h2>Class Distribution</h2> |
|
<pre> Count Percentage |
|
class |
|
1 4574 50.16 |
|
0 4545 49.84</pre> |
|
<h3>Additional Metrics</h3> |
|
<ul> |
|
<li>Total Samples: 9119</li> |
|
<li>Imbalance Ratio: 1.01</li> |
|
</ul> |
|
</div> |
|
<div class="section"> |
|
<h2>Classification Report</h2> |
|
<pre> precision recall f1-score support |
|
|
|
Class 0 0.9913 1.0000 0.9956 909 |
|
Class 1 1.0000 0.9913 0.9956 915 |
|
|
|
accuracy 0.9956 1824 |
|
macro avg 0.9956 0.9956 0.9956 1824 |
|
weighted avg 0.9957 0.9956 0.9956 1824 |
|
</pre> |
|
<h3>Metrics</h3> |
|
<div class="metrics"> |
|
<ul> |
|
<li>True Positives (TP): 907</li> |
|
<li>True Negatives (TN): 909</li> |
|
</ul> |
|
<ul> |
|
<li>False Positives (FP): 0</li> |
|
<li>False Negatives (FN): 8</li> |
|
</ul> |
|
</div> |
|
</div> |
|
<div class="section confusion-matrix"> |
|
<h2>Confusion Matrix</h2> |
|
<img src="" alt="Confusion Matrix"> |
|
</div> |
|
</div> |
|
</div> |
|
|
|
</body> |
|
</html> |
|
|