diff --git "a/Train-Reports/G2-like/report_13TYGCVK.html" "b/Train-Reports/G2-like/report_13TYGCVK.html" new file mode 100644--- /dev/null +++ "b/Train-Reports/G2-like/report_13TYGCVK.html" @@ -0,0 +1,265 @@ + + + + GENE_FAMILY: G2-like + + + +
+

GENE_FAMILY: G2-like

+
+ +
+
MODEL: FEEDFORWARD_k2
+
+
+

Model Architecture

+
Model: "FEEDFORWARD_k2"
+┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
+┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
+┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
+│ dense (Dense)                        │ (None, 256)                 │         113,152 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout (Dropout)                    │ (None, 256)                 │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_1 (Dense)                      │ (None, 128)                 │          32,896 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_1 (Dropout)                  │ (None, 128)                 │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_2 (Dense)                      │ (None, 64)                  │           8,256 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_2 (Dropout)                  │ (None, 64)                  │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_3 (Dense)                      │ (None, 32)                  │           2,080 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_3 (Dropout)                  │ (None, 32)                  │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_4 (Dense)                      │ (None, 1)                   │              33 │
+└──────────────────────────────��───────┴─────────────────────────────┴─────────────────┘
+ Total params: 469,253 (1.79 MB)
+ Trainable params: 156,417 (611.00 KB)
+ Non-trainable params: 0 (0.00 B)
+ Optimizer params: 312,836 (1.19 MB)
+
+
+
+

Learning Curve

+ Learning Curve +
+
+
+
+

Class Distribution

+
       Count  Percentage
+class                   
+1       2504       50.08
+0       2496       49.92
+

Additional Metrics

+
    +
  • Total Samples: 5000
  • +
  • Imbalance Ratio: 1.00
  • +
+
+
+

Classification Report

+
              precision    recall  f1-score   support
+
+     Class 0     0.9506    0.9639    0.9572       499
+     Class 1     0.9636    0.9501    0.9568       501
+
+    accuracy                         0.9570      1000
+   macro avg     0.9571    0.9570    0.9570      1000
+weighted avg     0.9571    0.9570    0.9570      1000
+
+

Metrics

+
+
    +
  • True Positives (TP): 476
  • +
  • True Negatives (TN): 481
  • +
+
    +
  • False Positives (FP): 18
  • +
  • False Negatives (FN): 25
  • +
+
+
+
+

Confusion Matrix

+ Confusion Matrix +
+
+
+ +
+
MODEL: FEEDFORWARD_k3
+
+
+

Model Architecture

+
Model: "FEEDFORWARD_k3"
+┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
+┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
+┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
+│ dense_5 (Dense)                      │ (None, 256)                 │       2,228,736 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_4 (Dropout)                  │ (None, 256)                 │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_6 (Dense)                      │ (None, 128)                 │          32,896 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_5 (Dropout)                  │ (None, 128)                 │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_7 (Dense)                      │ (None, 64)                  │           8,256 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_6 (Dropout)                  │ (None, 64)                  │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_8 (Dense)                      │ (None, 32)                  │           2,080 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_7 (Dropout)                  │ (None, 32)                  │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_9 (Dense)                      │ (None, 1)                   │              33 │
+└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
+ Total params: 6,816,005 (26.00 MB)
+ Trainable params: 2,272,001 (8.67 MB)
+ Non-trainable params: 0 (0.00 B)
+ Optimizer params: 4,544,004 (17.33 MB)
+
+
+
+

Learning Curve

+ Learning Curve +
+
+
+
+

Class Distribution

+
       Count  Percentage
+class                   
+1       2504       50.08
+0       2496       49.92
+

Additional Metrics

+
    +
  • Total Samples: 5000
  • +
  • Imbalance Ratio: 1.00
  • +
+
+
+

Classification Report

+
              precision    recall  f1-score   support
+
+     Class 0     0.9650    0.9940    0.9793       499
+     Class 1     0.9938    0.9641    0.9787       501
+
+    accuracy                         0.9790      1000
+   macro avg     0.9794    0.9790    0.9790      1000
+weighted avg     0.9794    0.9790    0.9790      1000
+
+

Metrics

+
+
    +
  • True Positives (TP): 483
  • +
  • True Negatives (TN): 496
  • +
+
    +
  • False Positives (FP): 3
  • +
  • False Negatives (FN): 18
  • +
+
+
+
+

Confusion Matrix

+ Confusion Matrix +
+
+
+ +
+
MODEL: FEEDFORWARD_k4
+
+
+

Model Architecture

+
Model: "FEEDFORWARD_k4"
+┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
+┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
+┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
+│ dense_10 (Dense)                     │ (None, 256)                 │      36,634,112 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_8 (Dropout)                  │ (None, 256)                 │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_11 (Dense)                     │ (None, 128)                 │          32,896 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_9 (Dropout)                  │ (None, 128)                 │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_12 (Dense)                     │ (None, 64)                  │           8,256 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_10 (Dropout)                 │ (None, 64)                  │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_13 (Dense)                     │ (None, 1)                   │              65 │
+└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
+ Total params: 110,025,989 (419.72 MB)
+ Trainable params: 36,675,329 (139.91 MB)
+ Non-trainable params: 0 (0.00 B)
+ Optimizer params: 73,350,660 (279.81 MB)
+
+
+
+

Learning Curve

+ Learning Curve +
+
+
+
+

Class Distribution

+
       Count  Percentage
+class                   
+1       2504       50.08
+0       2496       49.92
+

Additional Metrics

+
    +
  • Total Samples: 5000
  • +
  • Imbalance Ratio: 1.00
  • +
+
+
+

Classification Report

+
              precision    recall  f1-score   support
+
+     Class 0     0.9577    0.9980    0.9774       499
+     Class 1     0.9979    0.9561    0.9766       501
+
+    accuracy                         0.9770      1000
+   macro avg     0.9778    0.9770    0.9770      1000
+weighted avg     0.9778    0.9770    0.9770      1000
+
+

Metrics

+
+
    +
  • True Positives (TP): 479
  • +
  • True Negatives (TN): 498
  • +
+
    +
  • False Positives (FP): 1
  • +
  • False Negatives (FN): 22
  • +
+
+
+
+

Confusion Matrix

+ Confusion Matrix +
+
+
+ + + + \ No newline at end of file