diff --git "a/Train-Reports/HD-ZIP/report_FERAC6DP.html" "b/Train-Reports/HD-ZIP/report_FERAC6DP.html" new file mode 100644--- /dev/null +++ "b/Train-Reports/HD-ZIP/report_FERAC6DP.html" @@ -0,0 +1,265 @@ + + + + GENE_FAMILY: HD-ZIP + + + +
+

GENE_FAMILY: HD-ZIP

+
+ +
+
MODEL: FEEDFORWARD_k2
+
+
+

Model Architecture

+
Model: "FEEDFORWARD_k2"
+┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
+┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
+┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
+│ dense (Dense)                        │ (None, 256)                 │         113,152 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout (Dropout)                    │ (None, 256)                 │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_1 (Dense)                      │ (None, 128)                 │          32,896 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_1 (Dropout)                  │ (None, 128)                 │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_2 (Dense)                      │ (None, 64)                  │           8,256 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_2 (Dropout)                  │ (None, 64)                  │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_3 (Dense)                      │ (None, 32)                  │           2,080 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_3 (Dropout)                  │ (None, 32)                  │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_4 (Dense)                      │ (None, 1)                   │              33 │
+└───────────────────────────────��──────┴─────────────────────────────┴─────────────────┘
+ Total params: 469,253 (1.79 MB)
+ Trainable params: 156,417 (611.00 KB)
+ Non-trainable params: 0 (0.00 B)
+ Optimizer params: 312,836 (1.19 MB)
+
+
+
+

Learning Curve

+ Learning Curve +
+
+
+
+

Class Distribution

+
       Count  Percentage
+class                   
+1       2504       50.08
+0       2496       49.92
+

Additional Metrics

+
    +
  • Total Samples: 5000
  • +
  • Imbalance Ratio: 1.00
  • +
+
+
+

Classification Report

+
              precision    recall  f1-score   support
+
+     Class 0     0.9918    0.9739    0.9828       499
+     Class 1     0.9745    0.9920    0.9832       501
+
+    accuracy                         0.9830      1000
+   macro avg     0.9832    0.9830    0.9830      1000
+weighted avg     0.9832    0.9830    0.9830      1000
+
+

Metrics

+
+
    +
  • True Positives (TP): 497
  • +
  • True Negatives (TN): 486
  • +
+
    +
  • False Positives (FP): 13
  • +
  • False Negatives (FN): 4
  • +
+
+
+
+

Confusion Matrix

+ Confusion Matrix +
+
+
+ +
+
MODEL: FEEDFORWARD_k3
+
+
+

Model Architecture

+
Model: "FEEDFORWARD_k3"
+┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
+┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
+┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
+│ dense_5 (Dense)                      │ (None, 256)                 │       2,235,136 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_4 (Dropout)                  │ (None, 256)                 │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_6 (Dense)                      │ (None, 128)                 │          32,896 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_5 (Dropout)                  │ (None, 128)                 │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_7 (Dense)                      │ (None, 64)                  │           8,256 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_6 (Dropout)                  │ (None, 64)                  │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_8 (Dense)                      │ (None, 32)                  │           2,080 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_7 (Dropout)                  │ (None, 32)                  │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_9 (Dense)                      │ (None, 1)                   │              33 │
+└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
+ Total params: 6,835,205 (26.07 MB)
+ Trainable params: 2,278,401 (8.69 MB)
+ Non-trainable params: 0 (0.00 B)
+ Optimizer params: 4,556,804 (17.38 MB)
+
+
+
+

Learning Curve

+ Learning Curve +
+
+
+
+

Class Distribution

+
       Count  Percentage
+class                   
+1       2504       50.08
+0       2496       49.92
+

Additional Metrics

+
    +
  • Total Samples: 5000
  • +
  • Imbalance Ratio: 1.00
  • +
+
+
+

Classification Report

+
              precision    recall  f1-score   support
+
+     Class 0     0.9980    1.0000    0.9990       499
+     Class 1     1.0000    0.9980    0.9990       501
+
+    accuracy                         0.9990      1000
+   macro avg     0.9990    0.9990    0.9990      1000
+weighted avg     0.9990    0.9990    0.9990      1000
+
+

Metrics

+
+
    +
  • True Positives (TP): 500
  • +
  • True Negatives (TN): 499
  • +
+
    +
  • False Positives (FP): 0
  • +
  • False Negatives (FN): 1
  • +
+
+
+
+

Confusion Matrix

+ Confusion Matrix +
+
+
+ +
+
MODEL: FEEDFORWARD_k4
+
+
+

Model Architecture

+
Model: "FEEDFORWARD_k4"
+┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
+┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
+┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
+│ dense_10 (Dense)                     │ (None, 256)                 │      36,379,392 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_8 (Dropout)                  │ (None, 256)                 │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_11 (Dense)                     │ (None, 128)                 │          32,896 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_9 (Dropout)                  │ (None, 128)                 │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_12 (Dense)                     │ (None, 64)                  │           8,256 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dropout_10 (Dropout)                 │ (None, 64)                  │               0 │
+├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
+│ dense_13 (Dense)                     │ (None, 1)                   │              65 │
+└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
+ Total params: 109,261,829 (416.80 MB)
+ Trainable params: 36,420,609 (138.93 MB)
+ Non-trainable params: 0 (0.00 B)
+ Optimizer params: 72,841,220 (277.87 MB)
+
+
+
+

Learning Curve

+ Learning Curve +
+
+
+
+

Class Distribution

+
       Count  Percentage
+class                   
+1       2504       50.08
+0       2496       49.92
+

Additional Metrics

+
    +
  • Total Samples: 5000
  • +
  • Imbalance Ratio: 1.00
  • +
+
+
+

Classification Report

+
              precision    recall  f1-score   support
+
+     Class 0     0.9980    1.0000    0.9990       499
+     Class 1     1.0000    0.9980    0.9990       501
+
+    accuracy                         0.9990      1000
+   macro avg     0.9990    0.9990    0.9990      1000
+weighted avg     0.9990    0.9990    0.9990      1000
+
+

Metrics

+
+
    +
  • True Positives (TP): 500
  • +
  • True Negatives (TN): 499
  • +
+
    +
  • False Positives (FP): 0
  • +
  • False Negatives (FN): 1
  • +
+
+
+
+

Confusion Matrix

+ Confusion Matrix +
+
+
+ + + + \ No newline at end of file