Create train.py
Browse files
train.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import TrainingArguments, Trainer
|
2 |
+
from datasets import load_dataset
|
3 |
+
import evaluate
|
4 |
+
import numpy as np
|
5 |
+
from modeling_octagon import OctagonForSequenceClassification, OctagonConfig
|
6 |
+
from tokenization_octagon import OctagonTokenizer
|
7 |
+
|
8 |
+
# Load dataset
|
9 |
+
dataset = load_dataset("imdb")
|
10 |
+
|
11 |
+
# Sample training (for demo purposes, use smaller subset)
|
12 |
+
train_dataset = dataset["train"].shuffle(seed=42).select(range(1000))
|
13 |
+
eval_dataset = dataset["test"].shuffle(seed=42).select(range(200))
|
14 |
+
|
15 |
+
# Initialize tokenizer
|
16 |
+
tokenizer = OctagonTokenizer.train_tokenizer(
|
17 |
+
texts=train_dataset["text"],
|
18 |
+
vocab_size=30522,
|
19 |
+
save_path="octagon-tokenizer.json"
|
20 |
+
)
|
21 |
+
|
22 |
+
# Tokenize function
|
23 |
+
def tokenize_function(examples):
|
24 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True)
|
25 |
+
|
26 |
+
tokenized_train = train_dataset.map(tokenize_function, batched=True)
|
27 |
+
tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
|
28 |
+
|
29 |
+
# Model config
|
30 |
+
config = OctagonConfig(
|
31 |
+
vocab_size=30522,
|
32 |
+
hidden_size=128, # Smaller for demo
|
33 |
+
num_hidden_layers=4,
|
34 |
+
num_attention_heads=4,
|
35 |
+
intermediate_size=512,
|
36 |
+
num_labels=2
|
37 |
+
)
|
38 |
+
|
39 |
+
model = OctagonForSequenceClassification(config)
|
40 |
+
|
41 |
+
# Metrics
|
42 |
+
metric = evaluate.load("accuracy")
|
43 |
+
|
44 |
+
def compute_metrics(eval_pred):
|
45 |
+
logits, labels = eval_pred
|
46 |
+
predictions = np.argmax(logits, axis=-1)
|
47 |
+
return metric.compute(predictions=predictions, references=labels)
|
48 |
+
|
49 |
+
# Training args
|
50 |
+
training_args = TrainingArguments(
|
51 |
+
output_dir="octagon_model",
|
52 |
+
evaluation_strategy="epoch",
|
53 |
+
save_strategy="epoch",
|
54 |
+
learning_rate=2e-5,
|
55 |
+
per_device_train_batch_size=8,
|
56 |
+
per_device_eval_batch_size=8,
|
57 |
+
num_train_epochs=3,
|
58 |
+
weight_decay=0.01,
|
59 |
+
load_best_model_at_end=True,
|
60 |
+
)
|
61 |
+
|
62 |
+
# Trainer
|
63 |
+
trainer = Trainer(
|
64 |
+
model=model,
|
65 |
+
args=training_args,
|
66 |
+
train_dataset=tokenized_train,
|
67 |
+
eval_dataset=tokenized_eval,
|
68 |
+
compute_metrics=compute_metrics,
|
69 |
+
)
|
70 |
+
|
71 |
+
# Train
|
72 |
+
trainer.train()
|
73 |
+
|
74 |
+
# Save model
|
75 |
+
model.save_pretrained("octagon_model")
|
76 |
+
tokenizer.save_pretrained("octagon_model")
|