File size: 5,220 Bytes
c790700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---

library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-invoice_ConControl_v1
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-finetuned-invoice_ConControl_v1

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1550
- Precision: 0.8826
- Recall: 0.7390
- F1: 0.8044
- Accuracy: 0.9788

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05

- train_batch_size: 16

- eval_batch_size: 16

- seed: 42

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- training_steps: 300

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 8    | 0.5664          | 0.0       | 0.0    | 0.0    | 0.9383   |
| No log        | 2.0   | 16   | 0.3789          | 0.0       | 0.0    | 0.0    | 0.9383   |
| No log        | 3.0   | 24   | 0.3673          | 0.0       | 0.0    | 0.0    | 0.9383   |
| No log        | 4.0   | 32   | 0.3596          | 0.0       | 0.0    | 0.0    | 0.9383   |
| No log        | 5.0   | 40   | 0.3381          | 0.0       | 0.0    | 0.0    | 0.9383   |
| No log        | 6.0   | 48   | 0.2985          | 0.0       | 0.0    | 0.0    | 0.9383   |
| No log        | 7.0   | 56   | 0.2590          | 0.5833    | 0.0949 | 0.1633 | 0.9456   |
| No log        | 8.0   | 64   | 0.2310          | 0.6629    | 0.3932 | 0.4936 | 0.9585   |
| No log        | 9.0   | 72   | 0.2125          | 0.5837    | 0.5085 | 0.5435 | 0.9639   |
| No log        | 10.0  | 80   | 0.2003          | 0.6130    | 0.5424 | 0.5755 | 0.9672   |
| No log        | 11.0  | 88   | 0.1858          | 0.6667    | 0.5831 | 0.6221 | 0.9696   |
| No log        | 12.0  | 96   | 0.1734          | 0.7188    | 0.6237 | 0.6679 | 0.9731   |
| No log        | 13.0  | 104  | 0.1719          | 0.7510    | 0.6542 | 0.6993 | 0.9739   |
| No log        | 14.0  | 112  | 0.1677          | 0.8048    | 0.6847 | 0.7399 | 0.9756   |
| No log        | 15.0  | 120  | 0.1616          | 0.8008    | 0.6949 | 0.7441 | 0.9754   |
| No log        | 16.0  | 128  | 0.1587          | 0.8038    | 0.7085 | 0.7532 | 0.9757   |
| No log        | 17.0  | 136  | 0.1528          | 0.8275    | 0.7153 | 0.7673 | 0.9783   |
| No log        | 18.0  | 144  | 0.1591          | 0.8554    | 0.7220 | 0.7831 | 0.9779   |
| No log        | 19.0  | 152  | 0.1449          | 0.868     | 0.7356 | 0.7963 | 0.9791   |
| No log        | 20.0  | 160  | 0.1568          | 0.8611    | 0.7356 | 0.7934 | 0.9786   |
| No log        | 21.0  | 168  | 0.1509          | 0.8645    | 0.7356 | 0.7949 | 0.9788   |
| No log        | 22.0  | 176  | 0.1465          | 0.8715    | 0.7356 | 0.7978 | 0.9786   |
| No log        | 23.0  | 184  | 0.1446          | 0.8577    | 0.7356 | 0.7920 | 0.9783   |
| No log        | 24.0  | 192  | 0.1469          | 0.8645    | 0.7356 | 0.7949 | 0.9788   |
| No log        | 25.0  | 200  | 0.1513          | 0.8685    | 0.7390 | 0.7985 | 0.9788   |
| No log        | 26.0  | 208  | 0.1554          | 0.8617    | 0.7390 | 0.7956 | 0.9788   |
| No log        | 27.0  | 216  | 0.1511          | 0.8651    | 0.7390 | 0.7971 | 0.9786   |
| No log        | 28.0  | 224  | 0.1566          | 0.872     | 0.7390 | 0.8    | 0.9788   |
| No log        | 29.0  | 232  | 0.1544          | 0.8685    | 0.7390 | 0.7985 | 0.9788   |
| No log        | 30.0  | 240  | 0.1510          | 0.8622    | 0.7424 | 0.7978 | 0.9791   |
| No log        | 31.0  | 248  | 0.1589          | 0.8755    | 0.7390 | 0.8015 | 0.9788   |
| No log        | 32.0  | 256  | 0.1550          | 0.8826    | 0.7390 | 0.8044 | 0.9788   |
| No log        | 33.0  | 264  | 0.1498          | 0.8656    | 0.7424 | 0.7993 | 0.9791   |
| No log        | 34.0  | 272  | 0.1539          | 0.8725    | 0.7424 | 0.8022 | 0.9793   |
| No log        | 35.0  | 280  | 0.1542          | 0.8690    | 0.7424 | 0.8007 | 0.9793   |
| No log        | 36.0  | 288  | 0.1538          | 0.8690    | 0.7424 | 0.8007 | 0.9793   |
| No log        | 37.0  | 296  | 0.1543          | 0.8725    | 0.7424 | 0.8022 | 0.9793   |
| No log        | 37.5  | 300  | 0.1543          | 0.8725    | 0.7424 | 0.8022 | 0.9793   |


### Framework versions

- Transformers 4.50.0
- Pytorch 2.6.0+cu118
- Datasets 3.4.1
- Tokenizers 0.21.1