jakelever commited on
Commit
1232351
·
verified ·
1 Parent(s): 9e2c18f

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task: token-classification
3
+ tags:
4
+ - biomedical
5
+ - bionlp
6
+ license: mit
7
+ base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
8
+ ---
9
+
10
+ # bioner_ncbi_disease
11
+
12
+ This is a named entity recognition model fine-tuned from the [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) model. It predicts spans with 2 possible labels. The labels are **DiseaseClass and SpecificDisease**.
13
+
14
+ The code used for training this model can be found at https://github.com/Glasgow-AI4BioMed/bioner along with links to other biomedical NER models trained on well-known biomedical corpora. The source dataset information is below.
15
+
16
+ ## Example Usage
17
+
18
+ The code below will load up the model and apply it to the provided text. It uses a simple aggregation strategy to post-process the individual tokens into larger multi-token entities where needed.
19
+
20
+ ```python
21
+ from transformers import pipeline
22
+
23
+ # Load the model as part of an NER pipeline
24
+ ner_pipeline = pipeline("token-classification",
25
+ model="Glasgow-AI4BioMed/bioner_ncbi_disease",
26
+ aggregation_strategy="max")
27
+
28
+ # Apply it to some text
29
+ ner_pipeline("EGFR T790M mutations have been known to affect treatment outcomes for NSCLC patients receiving erlotinib.")
30
+
31
+ # Output:
32
+
33
+ ```
34
+
35
+ ## Dataset Info
36
+
37
+ **Source:** The NCBI Disease dataset was downloaded from: https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/
38
+
39
+ The dataset should be cited with: Doğan, Rezarta Islamaj, Robert Leaman, and Zhiyong Lu. "NCBI disease corpus: a resource for disease name recognition and concept normalization." Journal of biomedical informatics 47 (2014): 1-10. DOI: [10.1016/j.jbi.2013.12.006](https://doi.org/10.1016/j.jbi.2013.12.006)
40
+
41
+ **Preprocessing:** The training/validation/test split was maintained from the original dataset. The annotations were filtered down to only 'DiseaseClass' and 'SpecificDisease'. The preprocessing script for this dataset is [prepare_ncbi_disease.py](https://github.com/Glasgow-AI4BioMed/bioner/blob/main/prepare_ncbi_disease.py).
42
+
43
+ ## Performance
44
+
45
+ The span-level performance on the test split for the different labels are shown in the tables below. The full performance results are available in the model repo in Markdown format for viewing and JSON format for easier loading. These include the performance at token level (with individual B- and I- labels as the token classifier uses IOB2 token labelling).
46
+
47
+ | Label | Precision | Recall | F1-score | Support |
48
+ | --- | --- | --- | --- | --- |
49
+ | DiseaseClass | 0.592 | 0.769 | 0.669 | 121 |
50
+ | SpecificDisease | 0.816 | 0.809 | 0.813 | 555 |
51
+ | macro avg | 0.704 | 0.789 | 0.741 | 676 |
52
+ | weighted avg | 0.776 | 0.802 | 0.787 | 676 |
53
+
54
+
55
+ ## Hyperparameters
56
+
57
+ Hyperparameter tuning was done with [optuna](https://optuna.org/) and the [hyperparameter_search](https://huggingface.co/docs/transformers/en/hpo_train) functionality. 100 trials were run. Early stopping was applied during training. The best performing model was selected using the macro F1 performance on the validation set. The selected hyperparameters are in the table below.
58
+
59
+ | Hyperparameter | Value |
60
+ |----------------|-------|
61
+ | epochs | 9.0 |
62
+ | learning_rate | 4.2369194386745274e-05 |
63
+ | per_device_train_batch_size | 8 |
64
+ | weight_decay | 0.11095292966544487 |
65
+ | warmup_ratio | 0.009641097927077978 |
66
+
best_hyperparameters.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epochs": 9.0,
3
+ "learning_rate": 4.2369194386745274e-05,
4
+ "per_device_train_batch_size": 8,
5
+ "weight_decay": 0.11095292966544487,
6
+ "warmup_ratio": 0.009641097927077978
7
+ }
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "O",
13
+ "1": "B-DiseaseClass",
14
+ "2": "I-DiseaseClass",
15
+ "3": "B-SpecificDisease",
16
+ "4": "I-SpecificDisease"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.48.1",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41f40476612ba87cd2da8e641f59d9e2e82a56d63662eab279b6d045a80a3198
3
+ size 435605316
performance_report.json ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "token_level": {
4
+ "O": {
5
+ "precision": 0.9998746044508043,
6
+ "recall": 0.9994322831800989,
7
+ "f1-score": 0.9996533948864684,
8
+ "support": 135631.0
9
+ },
10
+ "B-DiseaseClass": {
11
+ "precision": 0.9935064935064936,
12
+ "recall": 0.9947984395318595,
13
+ "f1-score": 0.9941520467836257,
14
+ "support": 769.0
15
+ },
16
+ "I-DiseaseClass": {
17
+ "precision": 0.9964080459770115,
18
+ "recall": 0.9914224446032881,
19
+ "f1-score": 0.9939089931924041,
20
+ "support": 1399.0
21
+ },
22
+ "B-SpecificDisease": {
23
+ "precision": 0.9986518368722616,
24
+ "recall": 0.9976430976430977,
25
+ "f1-score": 0.9981472123968335,
26
+ "support": 2970.0
27
+ },
28
+ "I-SpecificDisease": {
29
+ "precision": 0.9895332390381896,
30
+ "recall": 0.9992858163119555,
31
+ "f1-score": 0.9943856158055575,
32
+ "support": 7001.0
33
+ },
34
+ "accuracy": 0.9992894362861203,
35
+ "macro avg": {
36
+ "precision": 0.9955948439689521,
37
+ "recall": 0.99651641625406,
38
+ "f1-score": 0.9960494526129778,
39
+ "support": 147770.0
40
+ },
41
+ "weighted avg": {
42
+ "precision": 0.9992941191589114,
43
+ "recall": 0.9992894362861203,
44
+ "f1-score": 0.9992905334260858,
45
+ "support": 147770.0
46
+ }
47
+ },
48
+ "span_level": {
49
+ "DiseaseClass": {
50
+ "precision": 0.9883419689119171,
51
+ "recall": 0.9921976592977894,
52
+ "f1-score": 0.9902660609993511,
53
+ "support": 769
54
+ },
55
+ "SpecificDisease": {
56
+ "precision": 0.973927392739274,
57
+ "recall": 0.9929340511440108,
58
+ "f1-score": 0.9833388870376542,
59
+ "support": 2972
60
+ },
61
+ "macro avg": {
62
+ "precision": 0.9811346808255955,
63
+ "recall": 0.9925658552209,
64
+ "f1-score": 0.9868024740185026,
65
+ "support": 3741
66
+ },
67
+ "weighted avg": {
68
+ "precision": 0.976890453171448,
69
+ "recall": 0.9927826784282278,
70
+ "f1-score": 0.9847628369912882,
71
+ "support": 3741
72
+ }
73
+ }
74
+ },
75
+ "val": {
76
+ "token_level": {
77
+ "O": {
78
+ "precision": 0.9942266157168965,
79
+ "recall": 0.9965860360547899,
80
+ "f1-score": 0.995404927747167,
81
+ "support": 24019.0
82
+ },
83
+ "B-DiseaseClass": {
84
+ "precision": 0.8490566037735849,
85
+ "recall": 0.7142857142857143,
86
+ "f1-score": 0.7758620689655172,
87
+ "support": 126.0
88
+ },
89
+ "I-DiseaseClass": {
90
+ "precision": 0.821917808219178,
91
+ "recall": 0.6857142857142857,
92
+ "f1-score": 0.7476635514018691,
93
+ "support": 175.0
94
+ },
95
+ "B-SpecificDisease": {
96
+ "precision": 0.8813559322033898,
97
+ "recall": 0.883495145631068,
98
+ "f1-score": 0.8824242424242424,
99
+ "support": 412.0
100
+ },
101
+ "I-SpecificDisease": {
102
+ "precision": 0.922992299229923,
103
+ "recall": 0.9139433551198257,
104
+ "f1-score": 0.9184455391351943,
105
+ "support": 918.0
106
+ },
107
+ "accuracy": 0.9883040935672515,
108
+ "macro avg": {
109
+ "precision": 0.8939098518285944,
110
+ "recall": 0.8388049073611367,
111
+ "f1-score": 0.863960065934798,
112
+ "support": 25650.0
113
+ },
114
+ "weighted avg": {
115
+ "precision": 0.9879754934182778,
116
+ "recall": 0.9883040935672515,
117
+ "f1-score": 0.9880671537835901,
118
+ "support": 25650.0
119
+ }
120
+ },
121
+ "span_level": {
122
+ "DiseaseClass": {
123
+ "precision": 0.7631578947368421,
124
+ "recall": 0.6904761904761905,
125
+ "f1-score": 0.725,
126
+ "support": 126
127
+ },
128
+ "SpecificDisease": {
129
+ "precision": 0.8411214953271028,
130
+ "recall": 0.8737864077669902,
131
+ "f1-score": 0.8571428571428571,
132
+ "support": 412
133
+ },
134
+ "macro avg": {
135
+ "precision": 0.8021396950319725,
136
+ "recall": 0.7821312991215903,
137
+ "f1-score": 0.7910714285714285,
138
+ "support": 538
139
+ },
140
+ "weighted avg": {
141
+ "precision": 0.8228623621033615,
142
+ "recall": 0.8308550185873605,
143
+ "f1-score": 0.8261949017525225,
144
+ "support": 538
145
+ }
146
+ }
147
+ },
148
+ "test": {
149
+ "token_level": {
150
+ "O": {
151
+ "precision": 0.9955296723126769,
152
+ "recall": 0.9908159516714968,
153
+ "f1-score": 0.9931672190172252,
154
+ "support": 24499.0
155
+ },
156
+ "B-DiseaseClass": {
157
+ "precision": 0.62,
158
+ "recall": 0.768595041322314,
159
+ "f1-score": 0.6863468634686347,
160
+ "support": 121.0
161
+ },
162
+ "I-DiseaseClass": {
163
+ "precision": 0.5545454545454546,
164
+ "recall": 0.7484662576687117,
165
+ "f1-score": 0.6370757180156658,
166
+ "support": 163.0
167
+ },
168
+ "B-SpecificDisease": {
169
+ "precision": 0.8444444444444444,
170
+ "recall": 0.8216216216216217,
171
+ "f1-score": 0.8328767123287671,
172
+ "support": 555.0
173
+ },
174
+ "I-SpecificDisease": {
175
+ "precision": 0.8679549114331723,
176
+ "recall": 0.9005847953216374,
177
+ "f1-score": 0.8839688396883969,
178
+ "support": 1197.0
179
+ },
180
+ "accuracy": 0.980704729602412,
181
+ "macro avg": {
182
+ "precision": 0.7764948965471496,
183
+ "recall": 0.8460167335211564,
184
+ "f1-score": 0.8066870705037379,
185
+ "support": 26535.0
186
+ },
187
+ "weighted avg": {
188
+ "precision": 0.9821933690119222,
189
+ "recall": 0.980704729602412,
190
+ "f1-score": 0.9813021401043428,
191
+ "support": 26535.0
192
+ }
193
+ },
194
+ "span_level": {
195
+ "DiseaseClass": {
196
+ "precision": 0.5923566878980892,
197
+ "recall": 0.768595041322314,
198
+ "f1-score": 0.6690647482014389,
199
+ "support": 121
200
+ },
201
+ "SpecificDisease": {
202
+ "precision": 0.8163636363636364,
203
+ "recall": 0.809009009009009,
204
+ "f1-score": 0.8126696832579184,
205
+ "support": 555
206
+ },
207
+ "macro avg": {
208
+ "precision": 0.7043601621308628,
209
+ "recall": 0.7888020251656616,
210
+ "f1-score": 0.7408672157296787,
211
+ "support": 676
212
+ },
213
+ "weighted avg": {
214
+ "precision": 0.7762677180732056,
215
+ "recall": 0.8017751479289941,
216
+ "f1-score": 0.7869652496161522,
217
+ "support": 676
218
+ }
219
+ }
220
+ }
221
+ }
performance_report.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Performance on Training Set
2
+
3
+ ## Span Level
4
+
5
+ | Label | Precision | Recall | F1-score | Support |
6
+ | --- | --- | --- | --- | --- |
7
+ | DiseaseClass | 0.988 | 0.992 | 0.990 | 769 |
8
+ | SpecificDisease | 0.974 | 0.993 | 0.983 | 2972 |
9
+ | macro avg | 0.981 | 0.993 | 0.987 | 3741 |
10
+ | weighted avg | 0.977 | 0.993 | 0.985 | 3741 |
11
+
12
+ ## Token Level
13
+
14
+ | Label | Precision | Recall | F1-score | Support |
15
+ | --- | --- | --- | --- | --- |
16
+ | O | 1.000 | 0.999 | 1.000 | 135631 |
17
+ | B-DiseaseClass | 0.994 | 0.995 | 0.994 | 769 |
18
+ | I-DiseaseClass | 0.996 | 0.991 | 0.994 | 1399 |
19
+ | B-SpecificDisease | 0.999 | 0.998 | 0.998 | 2970 |
20
+ | I-SpecificDisease | 0.990 | 0.999 | 0.994 | 7001 |
21
+ | macro avg | 0.996 | 0.997 | 0.996 | 147770 |
22
+ | weighted avg | 0.999 | 0.999 | 0.999 | 147770 |
23
+
24
+
25
+ # Performance on Validation Set
26
+
27
+ ## Span Level
28
+
29
+ | Label | Precision | Recall | F1-score | Support |
30
+ | --- | --- | --- | --- | --- |
31
+ | DiseaseClass | 0.763 | 0.690 | 0.725 | 126 |
32
+ | SpecificDisease | 0.841 | 0.874 | 0.857 | 412 |
33
+ | macro avg | 0.802 | 0.782 | 0.791 | 538 |
34
+ | weighted avg | 0.823 | 0.831 | 0.826 | 538 |
35
+
36
+ ## Token Level
37
+
38
+ | Label | Precision | Recall | F1-score | Support |
39
+ | --- | --- | --- | --- | --- |
40
+ | O | 0.994 | 0.997 | 0.995 | 24019 |
41
+ | B-DiseaseClass | 0.849 | 0.714 | 0.776 | 126 |
42
+ | I-DiseaseClass | 0.822 | 0.686 | 0.748 | 175 |
43
+ | B-SpecificDisease | 0.881 | 0.883 | 0.882 | 412 |
44
+ | I-SpecificDisease | 0.923 | 0.914 | 0.918 | 918 |
45
+ | macro avg | 0.894 | 0.839 | 0.864 | 25650 |
46
+ | weighted avg | 0.988 | 0.988 | 0.988 | 25650 |
47
+
48
+
49
+ # Performance on Testing Set
50
+
51
+ ## Span Level
52
+
53
+ | Label | Precision | Recall | F1-score | Support |
54
+ | --- | --- | --- | --- | --- |
55
+ | DiseaseClass | 0.592 | 0.769 | 0.669 | 121 |
56
+ | SpecificDisease | 0.816 | 0.809 | 0.813 | 555 |
57
+ | macro avg | 0.704 | 0.789 | 0.741 | 676 |
58
+ | weighted avg | 0.776 | 0.802 | 0.787 | 676 |
59
+
60
+ ## Token Level
61
+
62
+ | Label | Precision | Recall | F1-score | Support |
63
+ | --- | --- | --- | --- | --- |
64
+ | O | 0.996 | 0.991 | 0.993 | 24499 |
65
+ | B-DiseaseClass | 0.620 | 0.769 | 0.686 | 121 |
66
+ | I-DiseaseClass | 0.555 | 0.748 | 0.637 | 163 |
67
+ | B-SpecificDisease | 0.844 | 0.822 | 0.833 | 555 |
68
+ | I-SpecificDisease | 0.868 | 0.901 | 0.884 | 1197 |
69
+ | macro avg | 0.776 | 0.846 | 0.807 | 26535 |
70
+ | weighted avg | 0.982 | 0.981 | 0.981 | 26535 |
71
+
72
+
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c325025280b89c0d4da3c9c2ad88816a8a0cc2c4c2de7729901f3971a2bc79ff
3
+ size 14244
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
trainer_state.json ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.863960065934798,
3
+ "best_model_checkpoint": "tmp_ner_fantastic-bale-09_44/run-61/checkpoint-675",
4
+ "epoch": 9.0,
5
+ "eval_steps": 500,
6
+ "global_step": 675,
7
+ "is_hyper_param_search": true,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "eval_accuracy": 0.9783235867446394,
14
+ "eval_loss": 0.06952951103448868,
15
+ "eval_macro_f1": 0.6359234331864915,
16
+ "eval_macro_precision": 0.8484880913225343,
17
+ "eval_macro_recall": 0.621665816946364,
18
+ "eval_runtime": 0.6216,
19
+ "eval_samples_per_second": 160.873,
20
+ "eval_steps_per_second": 20.913,
21
+ "step": 75
22
+ },
23
+ {
24
+ "epoch": 2.0,
25
+ "eval_accuracy": 0.983391812865497,
26
+ "eval_loss": 0.056511040776968,
27
+ "eval_macro_f1": 0.7614548378523822,
28
+ "eval_macro_precision": 0.8731710257534685,
29
+ "eval_macro_recall": 0.7203600182300229,
30
+ "eval_runtime": 0.6015,
31
+ "eval_samples_per_second": 166.249,
32
+ "eval_steps_per_second": 21.612,
33
+ "step": 150
34
+ },
35
+ {
36
+ "epoch": 3.0,
37
+ "eval_accuracy": 0.9857309941520468,
38
+ "eval_loss": 0.05191269889473915,
39
+ "eval_macro_f1": 0.8172545857097553,
40
+ "eval_macro_precision": 0.8413749539052772,
41
+ "eval_macro_recall": 0.7970101814719535,
42
+ "eval_runtime": 0.6777,
43
+ "eval_samples_per_second": 147.557,
44
+ "eval_steps_per_second": 19.182,
45
+ "step": 225
46
+ },
47
+ {
48
+ "epoch": 4.0,
49
+ "eval_accuracy": 0.9871734892787525,
50
+ "eval_loss": 0.055695317685604095,
51
+ "eval_macro_f1": 0.8405769067306196,
52
+ "eval_macro_precision": 0.8557959065634769,
53
+ "eval_macro_recall": 0.8269452880439045,
54
+ "eval_runtime": 0.6377,
55
+ "eval_samples_per_second": 156.826,
56
+ "eval_steps_per_second": 20.387,
57
+ "step": 300
58
+ },
59
+ {
60
+ "epoch": 5.0,
61
+ "eval_accuracy": 0.9875243664717349,
62
+ "eval_loss": 0.055003080517053604,
63
+ "eval_macro_f1": 0.8540405601187896,
64
+ "eval_macro_precision": 0.8983484203175353,
65
+ "eval_macro_recall": 0.8221656291922347,
66
+ "eval_runtime": 0.6394,
67
+ "eval_samples_per_second": 156.406,
68
+ "eval_steps_per_second": 20.333,
69
+ "step": 375
70
+ },
71
+ {
72
+ "epoch": 6.0,
73
+ "eval_accuracy": 0.9878362573099415,
74
+ "eval_loss": 0.060502711683511734,
75
+ "eval_macro_f1": 0.8610460620824656,
76
+ "eval_macro_precision": 0.8865353357904526,
77
+ "eval_macro_recall": 0.8387695106889209,
78
+ "eval_runtime": 0.6171,
79
+ "eval_samples_per_second": 162.056,
80
+ "eval_steps_per_second": 21.067,
81
+ "step": 450
82
+ },
83
+ {
84
+ "epoch": 6.666666666666667,
85
+ "grad_norm": 0.02602095529437065,
86
+ "learning_rate": 3.3881089787380476e-05,
87
+ "loss": 0.08,
88
+ "step": 500
89
+ },
90
+ {
91
+ "epoch": 7.0,
92
+ "eval_accuracy": 0.9864327485380117,
93
+ "eval_loss": 0.06403131783008575,
94
+ "eval_macro_f1": 0.836324040811885,
95
+ "eval_macro_precision": 0.8309543877948833,
96
+ "eval_macro_recall": 0.8430665699031182,
97
+ "eval_runtime": 0.6657,
98
+ "eval_samples_per_second": 150.212,
99
+ "eval_steps_per_second": 19.528,
100
+ "step": 525
101
+ },
102
+ {
103
+ "epoch": 8.0,
104
+ "eval_accuracy": 0.9874463937621832,
105
+ "eval_loss": 0.06809797883033752,
106
+ "eval_macro_f1": 0.853127015308474,
107
+ "eval_macro_precision": 0.871470843170948,
108
+ "eval_macro_recall": 0.8370896203600997,
109
+ "eval_runtime": 0.6629,
110
+ "eval_samples_per_second": 150.862,
111
+ "eval_steps_per_second": 19.612,
112
+ "step": 600
113
+ },
114
+ {
115
+ "epoch": 9.0,
116
+ "eval_accuracy": 0.9883040935672515,
117
+ "eval_loss": 0.06698578596115112,
118
+ "eval_macro_f1": 0.863960065934798,
119
+ "eval_macro_precision": 0.8939098518285944,
120
+ "eval_macro_recall": 0.8388049073611367,
121
+ "eval_runtime": 0.6334,
122
+ "eval_samples_per_second": 157.89,
123
+ "eval_steps_per_second": 20.526,
124
+ "step": 675
125
+ }
126
+ ],
127
+ "logging_steps": 500,
128
+ "max_steps": 2400,
129
+ "num_input_tokens_seen": 0,
130
+ "num_train_epochs": 32,
131
+ "save_steps": 500,
132
+ "stateful_callbacks": {
133
+ "EarlyStoppingCallback": {
134
+ "args": {
135
+ "early_stopping_patience": 3,
136
+ "early_stopping_threshold": 0.001
137
+ },
138
+ "attributes": {
139
+ "early_stopping_patience_counter": 0
140
+ }
141
+ },
142
+ "TrainerControl": {
143
+ "args": {
144
+ "should_epoch_stop": false,
145
+ "should_evaluate": false,
146
+ "should_log": false,
147
+ "should_save": true,
148
+ "should_training_stop": false
149
+ },
150
+ "attributes": {}
151
+ }
152
+ },
153
+ "total_flos": 768333841626390.0,
154
+ "train_batch_size": 8,
155
+ "trial_name": null,
156
+ "trial_params": {
157
+ "learning_rate": 4.2369194386745274e-05,
158
+ "per_device_train_batch_size": 8,
159
+ "warmup_ratio": 0.009641097927077978,
160
+ "weight_decay": 0.11095292966544487
161
+ }
162
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff