GlitchXRiot commited on
Commit
8c6860d
1 Parent(s): 39105ce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +351 -3
README.md CHANGED
@@ -1,3 +1,351 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ license_link: https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE
4
+ language:
5
+ - en
6
+ tags:
7
+ - cogvideox
8
+ - video-generation
9
+ - thudm
10
+ - text-to-video
11
+ inference: false
12
+ ---
13
+
14
+ # Seba-AI-5B
15
+ #
16
+ <p style="text-align: center;">
17
+ <div align="center">
18
+ <img src=https://github.com/THUDM/CogVideo/raw/main/resources/ width="50%"/>
19
+ </div>
20
+ <p align="center">
21
+ <a href="https://huggingface.co/GlitchXRiot/Seba-Ai/README.md">📄 Glitch Readme</a> |
22
+ <a href="https://huggingface.co/GlitchXRiot/Seba-Ai">🤗 Glitch-Tech</a> |
23
+ <a href="https://huggingface.co/GlitchXRiot/Seba-Ai">🌐 Hugging Fcae </a> |
24
+ </p>
25
+ <p align="center">
26
+ 📍 Visit <a href="https://huggingface.co/GlitchXRiot/Seba-Ai">Glitch H/F </a> and <a href="https://huggingface.co/GlitchXRiot/Seba-Ai">API Platform</a> to experience commercial video generation models.
27
+ </p>
28
+
29
+ ## Demo Show
30
+
31
+ <!DOCTYPE html>
32
+ <html lang="en">
33
+ <head>
34
+ <meta charset="UTF-8">
35
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
36
+ <title>Video Gallery with Captions</title>
37
+ <style>
38
+ .video-container {
39
+ display: flex;
40
+ flex-wrap: wrap;
41
+ justify-content: space-around;
42
+ }
43
+ .video-item {
44
+ width: 45%;
45
+ margin-bottom: 20px;
46
+ transition: transform 0.3s;
47
+ }
48
+ .video-item:hover {
49
+ transform: scale(1.1);
50
+ }
51
+ .caption {
52
+ text-align: center;
53
+ margin-top: 10px;
54
+ font-size: 11px;
55
+ }
56
+ </style>
57
+ </head>
58
+ <body>
59
+ <div class="video-container">
60
+ <div class="video-item">
61
+ <video width="100%" controls>
62
+ <source src="https://github.com/user-attachments/assets/cf5953ea-96d3-48fd-9907-c4708752c714" type="video/mp4">
63
+ </video>
64
+ <div class="caption">A garden comes to life as a kaleidoscope of butterflies flutters amidst the blossoms, their delicate wings casting shadows on the petals below. In the background, a grand fountain cascades water with a gentle splendor, its rhythmic sound providing a soothing backdrop. Beneath the cool shade of a mature tree, a solitary wooden chair invites solitude and reflection, its smooth surface worn by the touch of countless visitors seeking a moment of tranquility in nature's embrace.</div>
65
+ </div>
66
+ <div class="video-item">
67
+ <video width="100%" controls>
68
+ <source src="https://github.com/user-attachments/assets/fe0a78e6-b669-4800-8cf0-b5f9b5145b52" type="video/mp4">
69
+ </video>
70
+ <div class="caption">A small boy, head bowed and determination etched on his face, sprints through the torrential downpour as lightning crackles and thunder rumbles in the distance. The relentless rain pounds the ground, creating a chaotic dance of water droplets that mirror the dramatic sky's anger. In the far background, the silhouette of a cozy home beckons, a faint beacon of safety and warmth amidst the fierce weather. The scene is one of perseverance and the unyielding spirit of a child braving the elements.</div>
71
+ </div>
72
+ <div class="video-item">
73
+ <video width="100%" controls>
74
+ <source src="https://github.com/user-attachments/assets/c182f606-8f8c-421d-b414-8487070fcfcb" type="video/mp4">
75
+ </video>
76
+ <div class="caption">A suited astronaut, with the red dust of Mars clinging to their boots, reaches out to shake hands with an alien being, their skin a shimmering blue, under the pink-tinged sky of the fourth planet. In the background, a sleek silver rocket, a beacon of human ingenuity, stands tall, its engines powered down, as the two representatives of different worlds exchange a historic greeting amidst the desolate beauty of the Martian landscape.</div>
77
+ </div>
78
+ <div class="video-item">
79
+ <video width="100%" controls>
80
+ <source src="https://github.com/user-attachments/assets/7db2bbce-194d-434d-a605-350254b6c298" type="video/mp4">
81
+ </video>
82
+ <div class="caption">An elderly gentleman, with a serene expression, sits at the water's edge, a steaming cup of tea by his side. He is engrossed in his artwork, brush in hand, as he renders an oil painting on a canvas that's propped up against a small, weathered table. The sea breeze whispers through his silver hair, gently billowing his loose-fitting white shirt, while the salty air adds an intangible element to his masterpiece in progress. The scene is one of tranquility and inspiration, with the artist's canvas capturing the vibrant hues of the setting sun reflecting off the tranquil sea.</div>
83
+ </div>
84
+ <div class="video-item">
85
+ <video width="100%" controls>
86
+ <source src="https://github.com/user-attachments/assets/62b01046-8cab-44cc-bd45-4d965bb615ec" type="video/mp4">
87
+ </video>
88
+ <div class="caption">In a dimly lit bar, purplish light bathes the face of a mature man, his eyes blinking thoughtfully as he ponders in close-up, the background artfully blurred to focus on his introspective expression, the ambiance of the bar a mere suggestion of shadows and soft lighting.</div>
89
+ </div>
90
+ <div class="video-item">
91
+ <video width="100%" controls>
92
+ <source src="https://github.com/user-attachments/assets/d78e552a-4b3f-4b81-ac3f-3898079554f6" type="video/mp4">
93
+ </video>
94
+ <div class="caption">A golden retriever, sporting sleek black sunglasses, with its lengthy fur flowing in the breeze, sprints playfully across a rooftop terrace, recently refreshed by a light rain. The scene unfolds from a distance, the dog's energetic bounds growing larger as it approaches the camera, its tail wagging with unrestrained joy, while droplets of water glisten on the concrete behind it. The overcast sky provides a dramatic backdrop, emphasizing the vibrant golden coat of the canine as it dashes towards the viewer.</div>
95
+ </div>
96
+ <div class="video-item">
97
+ <video width="100%" controls>
98
+ <source src="https://github.com/user-attachments/assets/30894f12-c741-44a2-9e6e-ddcacc231e5b" type="video/mp4">
99
+ </video>
100
+ <div class="caption">On a brilliant sunny day, the lakeshore is lined with an array of willow trees, their slender branches swaying gently in the soft breeze. The tranquil surface of the lake reflects the clear blue sky, while several elegant swans glide gracefully through the still water, leaving behind delicate ripples that disturb the mirror-like quality of the lake. The scene is one of serene beauty, with the willows' greenery providing a picturesque frame for the peaceful avian visitors.</div>
101
+ </div>
102
+ <div class="video-item">
103
+ <video width="100%" controls>
104
+ <source src="https://github.com/user-attachments/assets/926575ca-7150-435b-a0ff-4900a963297b" type="video/mp4">
105
+ </video>
106
+ <div class="caption">A Chinese mother, draped in a soft, pastel-colored robe, gently rocks back and forth in a cozy rocking chair positioned in the tranquil setting of a nursery. The dimly lit bedroom is adorned with whimsical mobiles dangling from the ceiling, casting shadows that dance on the walls. Her baby, swaddled in a delicate, patterned blanket, rests against her chest, the child's earlier cries now replaced by contented coos as the mother's soothing voice lulls the little one to sleep. The scent of lavender fills the air, adding to the serene atmosphere, while a warm, orange glow from a nearby nightlight illuminates the scene with a gentle hue, capturing a moment of tender love and comfort.</div>
107
+ </div>
108
+ </div>
109
+ </body>
110
+ </html>
111
+
112
+ ## Model Introduction
113
+
114
+ CogVideoX is an open-source version of the video generation model originating
115
+ from [QingYing](https://chatglm.cn/video?lang=en?fr=osm_cogvideo). The table below displays the list of video generation
116
+ models we currently offer, along with their foundational information.
117
+
118
+ <table style="border-collapse: collapse; width: 100%;">
119
+ <tr>
120
+ <th style="text-align: center;">Model Name</th>
121
+ <th style="text-align: center;">CogVideoX-2B</th>
122
+ <th style="text-align: center;">CogVideoX-5B (This Repository)</th>
123
+ </tr>
124
+ <tr>
125
+ <td style="text-align: center;">Model Description</td>
126
+ <td style="text-align: center;">Entry-level model, balancing compatibility. Low cost for running and secondary development.</td>
127
+ <td style="text-align: center;">Larger model with higher video generation quality and better visual effects.</td>
128
+ </tr>
129
+ <tr>
130
+ <td style="text-align: center;">Inference Precision</td>
131
+ <td style="text-align: center;"><b>FP16* (Recommended)</b>, BF16, FP32, FP8*, INT8, no support for INT4</td>
132
+ <td style="text-align: center;"><b>BF16 (Recommended)</b>, FP16, FP32, FP8*, INT8, no support for INT4</td>
133
+ </tr>
134
+ <tr>
135
+ <td style="text-align: center;">Single GPU VRAM Consumption<br></td>
136
+ <td style="text-align: center;"><a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> FP16: 18GB <br><b>diffusers FP16: starting from 4GB*</b><br><b>diffusers INT8(torchao): starting from 3.6GB*</b></td>
137
+ <td style="text-align: center;"><a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> BF16: 26GB <br><b>diffusers BF16: starting from 5GB*</b><br><b>diffusers INT8(torchao): starting from 4.4GB*</b></td>
138
+ </tr>
139
+ <tr>
140
+ <td style="text-align: center;">Multi-GPU Inference VRAM Consumption</td>
141
+ <td style="text-align: center;"><b>FP16: 10GB* using diffusers</b></td>
142
+ <td style="text-align: center;"><b>BF16: 15GB* using diffusers</b></td>
143
+ </tr>
144
+ <tr>
145
+ <td style="text-align: center;">Inference Speed<br>(Step = 50, FP/BF16)</td>
146
+ <td style="text-align: center;">Single A100: ~90 seconds<br>Single H100: ~45 seconds</td>
147
+ <td style="text-align: center;">Single A100: ~180 seconds<br>Single H100: ~90 seconds</td>
148
+ </tr>
149
+ <tr>
150
+ <td style="text-align: center;">Fine-tuning Precision</td>
151
+ <td style="text-align: center;"><b>FP16</b></td>
152
+ <td style="text-align: center;"><b>BF16</b></td>
153
+ </tr>
154
+ <tr>
155
+ <td style="text-align: center;">Fine-tuning VRAM Consumption (per GPU)</td>
156
+ <td style="text-align: center;">47 GB (bs=1, LORA)<br> 61 GB (bs=2, LORA)<br> 62GB (bs=1, SFT)</td>
157
+ <td style="text-align: center;">63 GB (bs=1, LORA)<br> 80 GB (bs=2, LORA)<br> 75GB (bs=1, SFT)</td>
158
+ </tr>
159
+ <tr>
160
+ <td style="text-align: center;">Prompt Language</td>
161
+ <td colspan="2" style="text-align: center;">English*</td>
162
+ </tr>
163
+ <tr>
164
+ <td style="text-align: center;">Prompt Length Limit</td>
165
+ <td colspan="2" style="text-align: center;">226 Tokens</td>
166
+ </tr>
167
+ <tr>
168
+ <td style="text-align: center;">Video Length</td>
169
+ <td colspan="2" style="text-align: center;">6 Seconds</td>
170
+ </tr>
171
+ <tr>
172
+ <td style="text-align: center;">Frame Rate</td>
173
+ <td colspan="2" style="text-align: center;">8 Frames per Second</td>
174
+ </tr>
175
+ <tr>
176
+ <td style="text-align: center;">Video Resolution</td>
177
+ <td colspan="2" style="text-align: center;">720 x 480, no support for other resolutions (including fine-tuning)</td>
178
+ </tr>
179
+ <tr>
180
+ <td style="text-align: center;">Positional Encoding</td>
181
+ <td style="text-align: center;">3d_sincos_pos_embed</td>
182
+ <td style="text-align: center;">3d_rope_pos_embed</td>
183
+ </tr>
184
+ </table>
185
+
186
+ **Data Explanation**
187
+
188
+ + When testing using the `diffusers` library, all optimizations provided by the `diffusers` library were enabled. This
189
+ solution has not been tested for actual VRAM/memory usage on devices other than **NVIDIA A100 / H100**. Generally,
190
+ this solution can be adapted to all devices with **NVIDIA Ampere architecture** and above. If the optimizations are
191
+ disabled, VRAM usage will increase significantly, with peak VRAM usage being about 3 times higher than the table
192
+ shows. However, speed will increase by 3-4 times. You can selectively disable some optimizations, including:
193
+
194
+ ```
195
+ pipe.enable_model_cpu_offload()
196
+ pipe.enable_sequential_cpu_offload()
197
+ pipe.vae.enable_slicing()
198
+ pipe.vae.enable_tiling()
199
+ ```
200
+
201
+ + When performing multi-GPU inference, the `enable_model_cpu_offload()` optimization needs to be disabled.
202
+ + Using INT8 models will reduce inference speed. This is to ensure that GPUs with lower VRAM can perform inference
203
+ normally while maintaining minimal video quality loss, though inference speed will decrease significantly.
204
+ + The 2B model is trained with `FP16` precision, and the 5B model is trained with `BF16` precision. We recommend using
205
+ the precision the model was trained with for inference.
206
+ + [PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be
207
+ used to quantize the text encoder, Transformer, and VAE modules to reduce CogVideoX's memory requirements. This makes
208
+ it possible to run the model on a free T4 Colab or GPUs with smaller VRAM! It is also worth noting that TorchAO
209
+ quantization is fully compatible with `torch.compile`, which can significantly improve inference speed. `FP8`
210
+ precision must be used on devices with `NVIDIA H100` or above, which requires installing
211
+ the `torch`, `torchao`, `diffusers`, and `accelerate` Python packages from source. `CUDA 12.4` is recommended.
212
+ + The inference speed test also used the above VRAM optimization scheme. Without VRAM optimization, inference speed
213
+ increases by about 10%. Only the `diffusers` version of the model supports quantization.
214
+ + The model only supports English input; other languages can be translated into English during refinement by a large
215
+ model.
216
+
217
+ **Note**
218
+
219
+ + Using [SAT](https://github.com/THUDM/SwissArmyTransformer) for inference and fine-tuning of SAT version
220
+ models. Feel free to visit our GitHub for more information.
221
+
222
+ ## Quick Start 🤗
223
+
224
+ This model supports deployment using the huggingface diffusers library. You can deploy it by following these steps.
225
+
226
+ **We recommend that you visit our [GitHub](https://github.com/THUDM/CogVideo) and check out the relevant prompt
227
+ optimizations and conversions to get a better experience.**
228
+
229
+ 1. Install the required dependencies
230
+
231
+ ```shell
232
+ # diffusers>=0.30.1
233
+ # transformers>=4.44.2
234
+ # accelerate>=0.33.0 (suggest install from source)
235
+ # imageio-ffmpeg>=0.5.1
236
+ pip install --upgrade transformers accelerate diffusers imageio-ffmpeg
237
+ ```
238
+
239
+ 2. Run the code
240
+
241
+ ```python
242
+ import torch
243
+ from diffusers import CogVideoXPipeline
244
+ from diffusers.utils import export_to_video
245
+
246
+ prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
247
+
248
+ pipe = CogVideoXPipeline.from_pretrained(
249
+ "THUDM/CogVideoX-5b",
250
+ torch_dtype=torch.bfloat16
251
+ )
252
+
253
+ pipe.enable_model_cpu_offload()
254
+ pipe.vae.enable_tiling()
255
+
256
+ video = pipe(
257
+ prompt=prompt,
258
+ num_videos_per_prompt=1,
259
+ num_inference_steps=50,
260
+ num_frames=49,
261
+ guidance_scale=6,
262
+ generator=torch.Generator(device="cuda").manual_seed(42),
263
+ ).frames[0]
264
+
265
+ export_to_video(video, "output.mp4", fps=8)
266
+ ```
267
+
268
+ ## Quantized Inference
269
+
270
+ [PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be
271
+ used to quantize the Text Encoder, Transformer and VAE modules to lower the memory requirement of CogVideoX. This makes
272
+ it possible to run the model on free-tier T4 Colab or smaller VRAM GPUs as well! It is also worth noting that TorchAO
273
+ quantization is fully compatible with `torch.compile`, which allows for much faster inference speed.
274
+
275
+ ```diff
276
+ # To get started, PytorchAO needs to be installed from the GitHub source and PyTorch Nightly.
277
+ # Source and nightly installation is only required until next release.
278
+
279
+ import torch
280
+ from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXPipeline
281
+ from diffusers.utils import export_to_video
282
+ + from transformers import T5EncoderModel
283
+ + from torchao.quantization import quantize_, int8_weight_only, int8_dynamic_activation_int8_weight
284
+
285
+ + quantization = int8_weight_only
286
+
287
+ + text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="text_encoder", torch_dtype=torch.bfloat16)
288
+ + quantize_(text_encoder, quantization())
289
+
290
+ + transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16)
291
+ + quantize_(transformer, quantization())
292
+
293
+ + vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-5b", subfolder="vae", torch_dtype=torch.bfloat16)
294
+ + quantize_(vae, quantization())
295
+
296
+ # Create pipeline and run inference
297
+ pipe = CogVideoXPipeline.from_pretrained(
298
+ "THUDM/CogVideoX-5b",
299
+ + text_encoder=text_encoder,
300
+ + transformer=transformer,
301
+ + vae=vae,
302
+ torch_dtype=torch.bfloat16,
303
+ )
304
+ pipe.enable_model_cpu_offload()
305
+ pipe.vae.enable_tiling()
306
+
307
+ prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
308
+
309
+ video = pipe(
310
+ prompt=prompt,
311
+ num_videos_per_prompt=1,
312
+ num_inference_steps=50,
313
+ num_frames=49,
314
+ guidance_scale=6,
315
+ generator=torch.Generator(device="cuda").manual_seed(42),
316
+ ).frames[0]
317
+
318
+ export_to_video(video, "output.mp4", fps=8)
319
+ ```
320
+
321
+ Additionally, the models can be serialized and stored in a quantized datatype to save disk space when using PytorchAO.
322
+ Find examples and benchmarks at these links:
323
+
324
+ - [torchao](https://gist.github.com/a-r-r-o-w/4d9732d17412888c885480c6521a9897)
325
+ - [quanto](https://gist.github.com/a-r-r-o-w/31be62828b00a9292821b85c1017effa)
326
+
327
+ ## Explore the Model
328
+
329
+ Welcome to our [github](https://github.com/GlitchXRiots/Seba-AI-Video-Generator), where you will find:
330
+
331
+ 1. More detailed technical details and code explanation.
332
+ 2. Optimization and conversion of prompt words.
333
+ 3. Reasoning and fine-tuning of SAT version models, and even pre-release.
334
+ 4. Project update log dynamics, more interactive opportunities.
335
+ 5. CogVideoX toolchain to help you better use the model.
336
+ 6. INT8 model inference code support.
337
+
338
+ ## Model License
339
+
340
+ This model is released under the [MIT].
341
+
342
+ ## Citation
343
+
344
+ ```
345
+ @article{GlitchX1.02AbdelrahmanEssa,
346
+ title={Seba-Ai-Video-Generator: Text-to-Video Diffusion Models with An Expert Transformer},
347
+ author={Abdelrahman, Glitch},
348
+ journal={arXiv preprint arXiv:2408.06072},
349
+ year={2024}
350
+ }
351
+ ```