File size: 6,116 Bytes
a0b398e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from classifier_utils import *


TQDM_DISABLE=True


def unsup_contrastive_loss(embeds_1: Tensor, embeds_2: Tensor, temp=0.05):
    '''
    embeds_1: [batch_size, hidden_size]
    embeds_2: [batch_size, hidden_size]
    '''

    # [batch_size, batch_size]
    sim_matrix = F.cosine_similarity(embeds_1.unsqueeze(1), embeds_2.unsqueeze(0), dim=-1) / temp

    # [batch_size]
    positive_sim = torch.diagonal(sim_matrix)

    # [batch_size]
    nume = torch.exp(positive_sim)

    # [batch_size]
    deno = torch.exp(sim_matrix).sum(1)

    # [batch_size]
    loss_per_batch = -torch.log(nume / deno)

    return loss_per_batch.sum()


def sup_contrastive_loss(embeds_1: Tensor, embeds_2: Tensor, embeds_3: Tensor, temp=0.05):
    '''
    embeds_1: [batch_size, hidden_size]
    embeds_2: [batch_size, hidden_size]
    embeds_3: [batch_size, hidden_size]
    '''

    # [batch_size, batch_size]
    pos_sim_matrix = F.cosine_similarity(embeds_1.unsqueeze(1), embeds_2.unsqueeze(0), dim=-1) / temp
    neg_sim_matrix = F.cosine_similarity(embeds_1.unsqueeze(1), embeds_3.unsqueeze(0), dim=-1) / temp
    
    # [batch_size]
    positive_sim = torch.diagonal(pos_sim_matrix)

    # [batch_size]
    nume = torch.exp(positive_sim)

    # [batch_size]
    deno = (torch.exp(pos_sim_matrix) + torch.exp(neg_sim_matrix)).sum(1)

    # [batch_size]
    loss_per_batch = -torch.log(nume / deno)

    return loss_per_batch.sum()


def sts_eval(dataloader, model: BertModel, device):
    model.eval()
    y_true = []
    y_pred = []
    sent_ids = []

    with torch.no_grad():
        for batch in tqdm(dataloader, desc='eval', leave=False, disable=TQDM_DISABLE):
            token_ids_1 = batch['token_ids_1'].to(device)
            token_ids_2 = batch['token_ids_2'].to(device)
            attention_mask_1 = batch['attention_mask_1'].to(device)
            attention_mask_2 = batch['attention_mask_2'].to(device)

            scores = batch['score']
            b_sent_ids = batch['sent_ids']
            
            logits_1 = model(token_ids_1, attention_mask_1)['pooler_output']
            logits_2 = model(token_ids_2, attention_mask_2)['pooler_output']
    
            sim = F.cosine_similarity(logits_1, logits_2)
            y_true.extend(scores)
            y_pred.extend(sim.cpu().tolist())
            sent_ids.extend(b_sent_ids)
        
    spearman_corr, _ = spearmanr(y_pred, y_true)
    return spearman_corr, b_sent_ids


def finetune_bert(args):
    '''
    Finetuning Baseline
    -------------------
    1. Load the Amazon Polarity (train) and STS Dataset (dev).
    2. Initialize pretrained minBERT
    3. Looping through 10 epoches.
    4. Calculate batches' SimCSE loss function.
    5. Backpropagation using Adam Optimizer.
    6. Evaluation on dev dataset:
        6.1. Create two [CLS] embeddings for given pair.
        6.2. Calculate their cosine similarity (0 <= sim <= 1).
        6.3. Spearman's correlation between calculated sim and expected sim.
    7. Better spearman's correlation (dev_acc > best_dev_acc) -> save_model(...).
    '''

    assert args.mode in ['unsup', 'sup']
    
    seed_everything(SEED)
    torch.set_num_threads(NUM_CPU_CORES)

    if args.mode == 'unsup':
        train_dataset = AmazonDataset(load_data(AMAZON_POLARITY, 'amazon'))
    else:
        train_dataset = InferenceDataset(load_data(NLI_TRAIN, 'nli'))

    train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size_train,
                                  num_workers=NUM_CPU_CORES, collate_fn=train_dataset.collate_fn)

    sts_dataset = SemanticDataset(load_data(STSB_DEV, 'stsb'))
    sts_dataloader = DataLoader(sts_dataset, shuffle=False, batch_size=args.batch_size_dev,
                                num_workers=NUM_CPU_CORES, collate_fn=sts_dataset.collate_fn)

    device = torch.device('cuda') if USE_GPU else torch.device('cpu')
    model = BertModel.from_pretrained('bert-base-uncased')
    model.to(device)

    best_dev_acc = 0
    optimizer = AdamW(model.parameters(), lr=args.lr)

    print(f'Finetuning minBERT with {args.mode}ervised method...')

    for epoch in range(EPOCHS):
        model.train()
        train_loss = num_batches = 0
        
        for batch in tqdm(train_dataloader, f'train-{epoch}', leave=False, disable=TQDM_DISABLE):
            if args.mode == 'unsup':
                b_ids = batch['token_ids'].to(device)
                b_mask = batch['attention_mask'].to(device)
    
                # Get different embeddings with different dropout masks
                logits_1 = model(b_ids, b_mask)['pooler_output']
                logits_2 = model(b_ids, b_mask)['pooler_output']
    
                # Calculate mean SimCSE loss function
                loss = unsup_contrastive_loss(logits_1, logits_2, args.temp)

            else:
                b_anchor_ids = batch['anchor_ids'].to(device)
                b_positive_ids = batch['positive_ids'].to(device)
                b_negative_ids = batch['negative_ids'].to(device)
                b_anchor_masks = batch['anchor_masks'].to(device)
                b_positive_masks = batch['positive_masks'].to(device)
                b_negative_masks = batch['negative_masks'].to(device)

                logits_1 = model(b_anchor_ids, b_anchor_masks)['pooler_output']
                logits_2 = model(b_positive_ids, b_positive_masks)['pooler_output']
                logits_3 = model(b_negative_ids, b_negative_masks)['pooler_output']

                loss = sup_contrastive_loss(logits_1, logits_2, logits_3, args.temp)

            # Back propagation
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            train_loss += loss.item()
            num_batches += 1

        train_loss /= num_batches
        dev_acc, _ = sts_eval(sts_dataloader, model, device)

        if dev_acc > best_dev_acc:
            best_dev_acc = dev_acc
            torch.save(model.state_dict(), args.filepath)
            print(f"save the model to {args.filepath}")

        print(f"Epoch {epoch}: train loss :: {train_loss :.3f}, dev acc :: {dev_acc :.3f}")