File size: 14,529 Bytes
9756d99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
'''
Multitask BERT class, starter training code, evaluation, and test code.

Of note are:
* class MultitaskBERT: Your implementation of multitask BERT.
* function train_multitask: Training procedure for MultitaskBERT. Starter code
    copies training procedure from `classifier.py` (single-task SST).
* function test_multitask: Test procedure for MultitaskBERT. This function generates
    the required files for submission.

Running `python multitask_classifier.py` trains and tests your MultitaskBERT and
writes all required submission files.
'''

import random, numpy as np, argparse
from types import SimpleNamespace

import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader

from bert import BertModel
from optimizer import AdamW
from tqdm import tqdm

from datasets import (
    SentenceClassificationDataset,
    SentenceClassificationTestDataset,
    SentencePairDataset,
    SentencePairTestDataset,
    load_multitask_data
)

from evaluation import model_eval_sst, model_eval_multitask, model_eval_test_multitask


TQDM_DISABLE=False


# Fix the random seed.
def seed_everything(seed=11711):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True


BERT_HIDDEN_SIZE = 768
N_SENTIMENT_CLASSES = 5


class MultitaskBERT(nn.Module):
    '''
    This module should use BERT for 3 tasks:

    - Sentiment classification (predict_sentiment)
    - Paraphrase detection (predict_paraphrase)
    - Semantic Textual Similarity (predict_similarity)
    '''
    def __init__(self, config):
        super(MultitaskBERT, self).__init__()
        self.bert = BertModel.from_pretrained('bert-base-uncased')
        # last-linear-layer mode does not require updating BERT paramters.
        assert config.fine_tune_mode in ["last-linear-layer", "full-model"]
        for param in self.bert.parameters():
            if config.fine_tune_mode == 'last-linear-layer':
                param.requires_grad = False
            elif config.fine_tune_mode == 'full-model':
                param.requires_grad = True
        # You will want to add layers here to perform the downstream tasks.
        ### TODO
        raise NotImplementedError


    def forward(self, input_ids, attention_mask):
        'Takes a batch of sentences and produces embeddings for them.'
        # The final BERT embedding is the hidden state of [CLS] token (the first token)
        # Here, you can start by just returning the embeddings straight from BERT.
        # When thinking of improvements, you can later try modifying this
        # (e.g., by adding other layers).
        ### TODO
        raise NotImplementedError


    def predict_sentiment(self, input_ids, attention_mask):
        '''Given a batch of sentences, outputs logits for classifying sentiment.
        There are 5 sentiment classes:
        (0 - negative, 1- somewhat negative, 2- neutral, 3- somewhat positive, 4- positive)
        Thus, your output should contain 5 logits for each sentence.
        '''
        ### TODO
        raise NotImplementedError


    def predict_paraphrase(self,
                           input_ids_1, attention_mask_1,
                           input_ids_2, attention_mask_2):
        '''Given a batch of pairs of sentences, outputs a single logit for predicting whether they are paraphrases.
        Note that your output should be unnormalized (a logit); it will be passed to the sigmoid function
        during evaluation.
        '''
        ### TODO
        raise NotImplementedError


    def predict_similarity(self,
                           input_ids_1, attention_mask_1,
                           input_ids_2, attention_mask_2):
        '''Given a batch of pairs of sentences, outputs a single logit corresponding to how similar they are.
        Note that your output should be unnormalized (a logit).
        '''
        ### TODO
        raise NotImplementedError




def save_model(model, optimizer, args, config, filepath):
    save_info = {
        'model': model.state_dict(),
        'optim': optimizer.state_dict(),
        'args': args,
        'model_config': config,
        'system_rng': random.getstate(),
        'numpy_rng': np.random.get_state(),
        'torch_rng': torch.random.get_rng_state(),
    }

    torch.save(save_info, filepath)
    print(f"save the model to {filepath}")


def train_multitask(args):
    '''Train MultitaskBERT.

    Currently only trains on SST dataset. The way you incorporate training examples
    from other datasets into the training procedure is up to you. To begin, take a
    look at test_multitask below to see how you can use the custom torch `Dataset`s
    in datasets.py to load in examples from the Quora and SemEval datasets.
    '''
    device = torch.device('cuda') if args.use_gpu else torch.device('cpu')
    # Create the data and its corresponding datasets and dataloader.
    sst_train_data, num_labels,para_train_data, sts_train_data = load_multitask_data(args.sst_train,args.para_train,args.sts_train, split ='train')
    sst_dev_data, num_labels,para_dev_data, sts_dev_data = load_multitask_data(args.sst_dev,args.para_dev,args.sts_dev, split ='train')

    sst_train_data = SentenceClassificationDataset(sst_train_data, args)
    sst_dev_data = SentenceClassificationDataset(sst_dev_data, args)

    sst_train_dataloader = DataLoader(sst_train_data, shuffle=True, batch_size=args.batch_size,
                                      collate_fn=sst_train_data.collate_fn)
    sst_dev_dataloader = DataLoader(sst_dev_data, shuffle=False, batch_size=args.batch_size,
                                    collate_fn=sst_dev_data.collate_fn)

    # Init model.
    config = {'hidden_dropout_prob': args.hidden_dropout_prob,
              'num_labels': num_labels,
              'hidden_size': 768,
              'data_dir': '.',
              'fine_tune_mode': args.fine_tune_mode}

    config = SimpleNamespace(**config)

    model = MultitaskBERT(config)
    model = model.to(device)

    lr = args.lr
    optimizer = AdamW(model.parameters(), lr=lr)
    best_dev_acc = 0

    # Run for the specified number of epochs.
    for epoch in range(args.epochs):
        model.train()
        train_loss = 0
        num_batches = 0
        for batch in tqdm(sst_train_dataloader, desc=f'train-{epoch}', disable=TQDM_DISABLE):
            b_ids, b_mask, b_labels = (batch['token_ids'],
                                       batch['attention_mask'], batch['labels'])

            b_ids = b_ids.to(device)
            b_mask = b_mask.to(device)
            b_labels = b_labels.to(device)

            optimizer.zero_grad()
            logits = model.predict_sentiment(b_ids, b_mask)
            loss = F.cross_entropy(logits, b_labels.view(-1), reduction='sum') / args.batch_size

            loss.backward()
            optimizer.step()

            train_loss += loss.item()
            num_batches += 1

        train_loss = train_loss / (num_batches)

        train_acc, train_f1, *_ = model_eval_sst(sst_train_dataloader, model, device)
        dev_acc, dev_f1, *_ = model_eval_sst(sst_dev_dataloader, model, device)

        if dev_acc > best_dev_acc:
            best_dev_acc = dev_acc
            save_model(model, optimizer, args, config, args.filepath)

        print(f"Epoch {epoch}: train loss :: {train_loss :.3f}, train acc :: {train_acc :.3f}, dev acc :: {dev_acc :.3f}")


def test_multitask(args):
    '''Test and save predictions on the dev and test sets of all three tasks.'''
    with torch.no_grad():
        device = torch.device('cuda') if args.use_gpu else torch.device('cpu')
        saved = torch.load(args.filepath)
        config = saved['model_config']

        model = MultitaskBERT(config)
        model.load_state_dict(saved['model'])
        model = model.to(device)
        print(f"Loaded model to test from {args.filepath}")

        sst_test_data, num_labels,para_test_data, sts_test_data = \
            load_multitask_data(args.sst_test,args.para_test, args.sts_test, split='test')

        sst_dev_data, num_labels,para_dev_data, sts_dev_data = \
            load_multitask_data(args.sst_dev,args.para_dev,args.sts_dev,split='dev')

        sst_test_data = SentenceClassificationTestDataset(sst_test_data, args)
        sst_dev_data = SentenceClassificationDataset(sst_dev_data, args)

        sst_test_dataloader = DataLoader(sst_test_data, shuffle=True, batch_size=args.batch_size,
                                         collate_fn=sst_test_data.collate_fn)
        sst_dev_dataloader = DataLoader(sst_dev_data, shuffle=False, batch_size=args.batch_size,
                                        collate_fn=sst_dev_data.collate_fn)

        para_test_data = SentencePairTestDataset(para_test_data, args)
        para_dev_data = SentencePairDataset(para_dev_data, args)

        para_test_dataloader = DataLoader(para_test_data, shuffle=True, batch_size=args.batch_size,
                                          collate_fn=para_test_data.collate_fn)
        para_dev_dataloader = DataLoader(para_dev_data, shuffle=False, batch_size=args.batch_size,
                                         collate_fn=para_dev_data.collate_fn)

        sts_test_data = SentencePairTestDataset(sts_test_data, args)
        sts_dev_data = SentencePairDataset(sts_dev_data, args, isRegression=True)

        sts_test_dataloader = DataLoader(sts_test_data, shuffle=True, batch_size=args.batch_size,
                                         collate_fn=sts_test_data.collate_fn)
        sts_dev_dataloader = DataLoader(sts_dev_data, shuffle=False, batch_size=args.batch_size,
                                        collate_fn=sts_dev_data.collate_fn)

        dev_sentiment_accuracy,dev_sst_y_pred, dev_sst_sent_ids, \
            dev_paraphrase_accuracy, dev_para_y_pred, dev_para_sent_ids, \
            dev_sts_corr, dev_sts_y_pred, dev_sts_sent_ids = model_eval_multitask(sst_dev_dataloader,
                                                                    para_dev_dataloader,
                                                                    sts_dev_dataloader, model, device)

        test_sst_y_pred, \
            test_sst_sent_ids, test_para_y_pred, test_para_sent_ids, test_sts_y_pred, test_sts_sent_ids = \
                model_eval_test_multitask(sst_test_dataloader,
                                          para_test_dataloader,
                                          sts_test_dataloader, model, device)

        with open(args.sst_dev_out, "w+") as f:
            print(f"dev sentiment acc :: {dev_sentiment_accuracy :.3f}")
            f.write(f"id \t Predicted_Sentiment \n")
            for p, s in zip(dev_sst_sent_ids, dev_sst_y_pred):
                f.write(f"{p} , {s} \n")

        with open(args.sst_test_out, "w+") as f:
            f.write(f"id \t Predicted_Sentiment \n")
            for p, s in zip(test_sst_sent_ids, test_sst_y_pred):
                f.write(f"{p} , {s} \n")

        with open(args.para_dev_out, "w+") as f:
            print(f"dev paraphrase acc :: {dev_paraphrase_accuracy :.3f}")
            f.write(f"id \t Predicted_Is_Paraphrase \n")
            for p, s in zip(dev_para_sent_ids, dev_para_y_pred):
                f.write(f"{p} , {s} \n")

        with open(args.para_test_out, "w+") as f:
            f.write(f"id \t Predicted_Is_Paraphrase \n")
            for p, s in zip(test_para_sent_ids, test_para_y_pred):
                f.write(f"{p} , {s} \n")

        with open(args.sts_dev_out, "w+") as f:
            print(f"dev sts corr :: {dev_sts_corr :.3f}")
            f.write(f"id \t Predicted_Similiary \n")
            for p, s in zip(dev_sts_sent_ids, dev_sts_y_pred):
                f.write(f"{p} , {s} \n")

        with open(args.sts_test_out, "w+") as f:
            f.write(f"id \t Predicted_Similiary \n")
            for p, s in zip(test_sts_sent_ids, test_sts_y_pred):
                f.write(f"{p} , {s} \n")


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--sst_train", type=str, default="data/ids-sst-train.csv")
    parser.add_argument("--sst_dev", type=str, default="data/ids-sst-dev.csv")
    parser.add_argument("--sst_test", type=str, default="data/ids-sst-test-student.csv")

    parser.add_argument("--para_train", type=str, default="data/quora-train.csv")
    parser.add_argument("--para_dev", type=str, default="data/quora-dev.csv")
    parser.add_argument("--para_test", type=str, default="data/quora-test-student.csv")

    parser.add_argument("--sts_train", type=str, default="data/sts-train.csv")
    parser.add_argument("--sts_dev", type=str, default="data/sts-dev.csv")
    parser.add_argument("--sts_test", type=str, default="data/sts-test-student.csv")

    parser.add_argument("--seed", type=int, default=11711)
    parser.add_argument("--epochs", type=int, default=10)
    parser.add_argument("--fine-tune-mode", type=str,
                        help='last-linear-layer: the BERT parameters are frozen and the task specific head parameters are updated; full-model: BERT parameters are updated as well',
                        choices=('last-linear-layer', 'full-model'), default="last-linear-layer")
    parser.add_argument("--use_gpu", action='store_true')

    parser.add_argument("--sst_dev_out", type=str, default="predictions/sst-dev-output.csv")
    parser.add_argument("--sst_test_out", type=str, default="predictions/sst-test-output.csv")

    parser.add_argument("--para_dev_out", type=str, default="predictions/para-dev-output.csv")
    parser.add_argument("--para_test_out", type=str, default="predictions/para-test-output.csv")

    parser.add_argument("--sts_dev_out", type=str, default="predictions/sts-dev-output.csv")
    parser.add_argument("--sts_test_out", type=str, default="predictions/sts-test-output.csv")

    parser.add_argument("--batch_size", help='sst: 64, cfimdb: 8 can fit a 12GB GPU', type=int, default=8)
    parser.add_argument("--hidden_dropout_prob", type=float, default=0.3)
    parser.add_argument("--lr", type=float, help="learning rate", default=1e-5)

    args = parser.parse_args()
    return args


if __name__ == "__main__":
    args = get_args()
    args.filepath = f'{args.fine_tune_mode}-{args.epochs}-{args.lr}-multitask.pt' # Save path.
    seed_everything(args.seed)  # Fix the seed for reproducibility.
    train_multitask(args)
    test_multitask(args)