File size: 8,281 Bytes
54f9196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import torch
import torch.nn as nn
from transformers import (
    AutoModelForCausalLM,
    CLIPVisionModel,
    PreTrainedModel,
    PretrainedConfig,
    AutoConfig,
    AutoModel
)
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING
from typing import Optional


class MultimodalLFM2Config(PretrainedConfig):
    model_type = "multimodal_lfm2"
    
    def __init__(
        self,
        lfm2_model_name="LiquidAI/LFM2-1.2B",
        clip_model_name="openai/clip-vit-base-patch32", 
        vision_projection_dim=512,
        **kwargs
    ):
        super().__init__(**kwargs)
        self.lfm2_model_name = lfm2_model_name
        self.clip_model_name = clip_model_name
        self.vision_projection_dim = vision_projection_dim


class MultimodalLFM2Model(PreTrainedModel):
    config_class = MultimodalLFM2Config
    
    def __init__(self, config):
        super().__init__(config)
        
        # --- Language Model ---
        self.language_model = AutoModelForCausalLM.from_pretrained(
            config.lfm2_model_name,
            torch_dtype=torch.bfloat16,
            trust_remote_code=True
        )
        
        # --- Vision Encoder ---
        self.vision_encoder = CLIPVisionModel.from_pretrained(config.clip_model_name)
        for param in self.vision_encoder.parameters():
            param.requires_grad = False
            
        # --- Projection Layer ---
        self.language_hidden_size = self.language_model.config.hidden_size
        self.vision_hidden_size = self.vision_encoder.config.hidden_size
        self.vision_projection = nn.Sequential(
            nn.Linear(self.vision_hidden_size, config.vision_projection_dim),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(config.vision_projection_dim, self.language_hidden_size),
            nn.LayerNorm(self.language_hidden_size)
        )
        self.image_token_id = None

    def gradient_checkpointing_enable(self, **kwargs):
        """Delegates gradient checkpointing to the language model."""
        self.language_model.gradient_checkpointing_enable(**kwargs)

    def _prepare_multimodal_inputs(
        self,
        input_ids: torch.Tensor,
        images: torch.Tensor
    ) -> torch.Tensor:
        """
        Prepares input embeddings by combining text and image features.
        """
        inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
        vision_outputs = self.vision_encoder(pixel_values=images)
        image_features = vision_outputs.last_hidden_state
        projected_image_features = self.vision_projection(image_features).to(self.language_model.dtype)

        batch_size = input_ids.shape[0]
        image_token_mask = (input_ids == self.image_token_id)

        for i in range(batch_size):
            image_positions = torch.where(image_token_mask[i])[0]
            if len(image_positions) > 0:
                img_feat = projected_image_features[i]
                # match length
                if len(image_positions) > img_feat.shape[0]:
                    repeat_times = (len(image_positions) + img_feat.shape[0] - 1) // img_feat.shape[0]
                    img_feat = img_feat.repeat(repeat_times, 1)[:len(image_positions)]
                elif len(image_positions) < img_feat.shape[0]:
                    img_feat = img_feat[:len(image_positions)]
                inputs_embeds[i, image_positions] = img_feat

        return inputs_embeds

    def forward(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        images: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        **kwargs
    ):
        """
        Forward pass for training.
        """
        if images is not None and self.image_token_id is not None:
            inputs_embeds = self._prepare_multimodal_inputs(input_ids, images)
            final_input_ids = None
        else:
            inputs_embeds = None
            final_input_ids = input_ids

        return self.language_model(
            input_ids=final_input_ids,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            labels=labels,
            return_dict=True
        )

    def generate(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        images: Optional[torch.Tensor] = None,
        **kwargs
    ):
        """
        Generation method for inference.
        """
        if images is not None and self.image_token_id is not None:
            inputs_embeds = self._prepare_multimodal_inputs(input_ids, images)
            final_input_ids = None
        else:
            inputs_embeds = None
            final_input_ids = input_ids

        return self.language_model.generate(
            input_ids=final_input_ids,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            **kwargs
        )

    def save_pretrained(self, save_directory, **kwargs):
        """
        Custom save method - saves everything in one directory.
        """
        os.makedirs(save_directory, exist_ok=True)
        
        # Save config
        self.config.save_pretrained(save_directory)
        
        # Save language model state dict directly
        torch.save(
            self.language_model.state_dict(),
            os.path.join(save_directory, "language_model.bin")
        )
        
        # Save language model config
        self.language_model.config.save_pretrained(save_directory, config_file_name="language_model_config.json")
        
        # Save vision projection
        torch.save(
            self.vision_projection.state_dict(),
            os.path.join(save_directory, "vision_projection.bin")
        )

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        """
        Custom loading method - works with your current structure.
        """
        config = cls.config_class.from_pretrained(pretrained_model_name_or_path)
        model = cls(config)
        
        # Try to load from pytorch_model.bin (your current structure)
        main_model_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin")
        if os.path.exists(main_model_path):
            # Load the full model state dict
            full_state_dict = torch.load(main_model_path, map_location="cpu")
            
            # Separate language model and vision projection weights
            language_state_dict = {}
            projection_state_dict = {}
            
            for key, value in full_state_dict.items():
                if key.startswith("language_model."):
                    # Remove the "language_model." prefix
                    new_key = key[len("language_model."):]
                    language_state_dict[new_key] = value
                elif key.startswith("vision_projection."):
                    # Remove the "vision_projection." prefix  
                    new_key = key[len("vision_projection."):]
                    projection_state_dict[new_key] = value
            
            # Load the separated state dicts
            if language_state_dict:
                model.language_model.load_state_dict(language_state_dict)
            if projection_state_dict:
                model.vision_projection.load_state_dict(projection_state_dict)
        else:
            # Fallback to separate files
            language_model_path = os.path.join(pretrained_model_name_or_path, "language_model.bin")
            if os.path.exists(language_model_path):
                language_state_dict = torch.load(language_model_path, map_location="cpu")
                model.language_model.load_state_dict(language_state_dict)
            
            projection_path = os.path.join(pretrained_model_name_or_path, "vision_projection.bin")
            if os.path.exists(projection_path):
                projection_state_dict = torch.load(projection_path, map_location="cpu")
                model.vision_projection.load_state_dict(projection_state_dict)
        
        return model


# Register the model with transformers
AutoConfig.register("multimodal_lfm2", MultimodalLFM2Config)
AutoModelForCausalLM.register(MultimodalLFM2Config, MultimodalLFM2Model)